File size: 7,884 Bytes
72268ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from model import ExLlama, ExLlamaCache, ExLlamaConfig
from tokenizer import ExLlamaTokenizer
import argparse, sys, os, glob
from torch import version as torch_version
from globals import set_affinity_str

def add_args(parser):

    parser.add_argument("-t", "--tokenizer", type = str, help = "Tokenizer model path")
    parser.add_argument("-c", "--config", type = str, help = "Model config path (config.json)")
    parser.add_argument("-m", "--model", type = str, help = "Model weights path (.pt or .safetensors file)")
    parser.add_argument("-d", "--directory", type = str, help = "Path to directory containing config.json, model.tokenizer and * .safetensors")

    parser.add_argument("-gs", "--gpu_split", type = str, help = "Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. -gs 20,7,7")
    parser.add_argument("-l", "--length", type = int, help = "Maximum sequence length", default = 2048)
    parser.add_argument("-cpe", "--compress_pos_emb", type = float, help = "Compression factor for positional embeddings", default = 1.0)
    parser.add_argument("-a", "--alpha", type = float, help = "alpha for context size extension via embedding extension", default = 1.0)
    parser.add_argument("-theta", "--theta", type = float, help = "theta (base) for RoPE embeddings")

    parser.add_argument("-gpfix", "--gpu_peer_fix", action = "store_true", help = "Prevent direct copies of data between GPUs")

    parser.add_argument("-flash", "--flash_attn", nargs = '?', const = 'default', metavar = "METHOD", help = "Use Flash Attention with specified input length (must have Flash Attention 2.0 installed)")

    parser.add_argument("-mmrt", "--matmul_recons_thd", type = int, help = "No. rows at which to use reconstruction and cuBLAS for quant matmul. 0 = never, 1 = always", default = 8)
    parser.add_argument("-fmt", "--fused_mlp_thd", type = int, help = "Maximum no. of rows for which to use fused MLP. 0 = never", default = 2)
    parser.add_argument("-sdpt", "--sdp_thd", type = int, help = "No. rows at which to switch to scaled_dot_product_attention. 0 = never, 1 = always", default = 8)
    parser.add_argument("-mmfr", "--matmul_fused_remap", action = "store_true", help = "Fuse column remapping in Q4 matmul kernel")
    parser.add_argument("-nfa", "--no_fused_attn", action = "store_true", help = "Disable fused attention")

    parser.add_argument("-rnnh2", "--rmsnorm_no_half2", action = "store_true", help = "Don't use half2 in RMS norm kernel")
    parser.add_argument("-rpnh2", "--rope_no_half2", action = "store_true", help = "Don't use half2 in RoPE kernel")
    parser.add_argument("-mmnh2", "--matmul_no_half2", action = "store_true", help = "Don't use half2 in Q4 matmul kernel")
    parser.add_argument("-snh2", "--silu_no_half2", action = "store_true", help = "Don't use half2 in SiLU kernel")
    parser.add_argument("-nh2", "--no_half2", action = "store_true", help = "(All of the above) disable half2 in all kernela")
    parser.add_argument("-fh2", "--force_half2", action = "store_true", help = "Force enable half2 even if unsupported")
    parser.add_argument("-cs", "--concurrent_streams", action = "store_true", help = "Use concurrent CUDA streams")

    parser.add_argument("-aff", "--affinity", type = str, help = "Comma-separated list, sets processor core affinity. E.g.: -aff 0,1,2,3")


def post_parse(args):

    if args.no_half2 or torch_version.hip and not args.force_half2:
        args.rmsnorm_no_half2 = True
        args.rope_no_half2 = True
        args.matmul_no_half2 = True
        args.silu_no_half2 = True


# Get model files from --directory

def get_model_files(args):

    if args.directory is not None:
        args.tokenizer = os.path.join(args.directory, "tokenizer.model")
        args.config = os.path.join(args.directory, "config.json")
        st_pattern = os.path.join(args.directory, "*.safetensors")
        st = glob.glob(st_pattern)
        if len(st) == 0:
            print(f" !! No files matching {st_pattern}")
            sys.exit()
        # if len(st) > 1:
        #     print(f" !! Multiple files matching {st_pattern}")
        #     sys.exit()
        args.model = st
    else:
        if args.tokenizer is None or args.config is None or args.model is None:
            print(" !! Please specify either -d or all of -t, -c and -m")
            sys.exit()


# Feedback

def _common_chars(names):
    cname = max(names, key = len)
    for x in names:
        for p, c in enumerate(x):
            if c != cname[p] and cname[p] != "*": cname = cname[:p] + "*" + cname[p+1:]
    return cname

def print_options(args, extra_options = None):

    print_opts = []
    if args.gpu_split is not None: print_opts.append(f"gpu_split: {args.gpu_split}")
    if args.gpu_peer_fix: print_opts.append("gpu_peer_fix")
    if args.affinity: print_opts.append(f" --affinity: {args.affinity}")

    if extra_options is not None: print_opts += extra_options

    print(f" -- Tokenizer: {args.tokenizer}")
    print(f" -- Model config: {args.config}")

    if isinstance(args.model, str): print(f" -- Model: {args.model}")
    else: print(f" -- Model: {_common_chars(args.model)}")

    print(f" -- Sequence length: {args.length}")
    if args.compress_pos_emb != 1.0:
        print(f" -- RoPE compression factor: {args.compress_pos_emb}")

    if args.alpha != 1.0:
        print(f" -- RoPE alpha factor: {args.alpha}")

    print(f" -- Tuning:")

    if args.flash_attn: print(f" -- --flash_attn")
    else: print(f" -- --sdp_thd: {args.sdp_thd}" + (" (disabled)" if args.sdp_thd == 0 else ""))

    print(f" -- --matmul_recons_thd: {args.matmul_recons_thd}" + (" (disabled)" if args.matmul_recons_thd == 0 else ""))
    print(f" -- --fused_mlp_thd: {args.fused_mlp_thd}" + (" (disabled)" if args.fused_mlp_thd == 0 else ""))
    if args.matmul_fused_remap: print(f" -- --matmul_fused_remap")
    if args.no_fused_attn: print(f" -- --no_fused_attn")
    if args.rmsnorm_no_half2: print(f" -- --rmsnorm_no_half2")
    if args.rope_no_half2: print(f" -- --rope_no_half2")
    if args.matmul_no_half2: print(f" -- --matmul_no_half2")
    if args.silu_no_half2: print(f" -- --silu_no_half2")
    if args.concurrent_streams: print(f" -- --concurrent_streams")

    print(f" -- Options: {print_opts}")


# Build ExLlamaConfig from args

def make_config(args):

    config = ExLlamaConfig(args.config)
    config.model_path = args.model

    config.max_seq_len = args.length
    config.compress_pos_emb = args.compress_pos_emb
    config.set_auto_map(args.gpu_split)
    config.gpu_peer_fix = args.gpu_peer_fix
    config.alpha_value = args.alpha
    config.calculate_rotary_embedding_base()

    if args.flash_attn:
        config.use_flash_attn_2 = True
        try:
            config.max_input_len = int(args.flash_attn)
        except ValueError:
            pass

    config.matmul_recons_thd = args.matmul_recons_thd
    config.fused_mlp_thd = args.fused_mlp_thd
    config.sdp_thd = args.sdp_thd
    config.matmul_fused_remap = args.matmul_fused_remap
    config.fused_attn = not args.no_fused_attn

    config.rmsnorm_no_half2 = args.rmsnorm_no_half2
    config.rope_no_half2 = args.rope_no_half2
    config.matmul_no_half2 = args.matmul_no_half2
    config.silu_no_half2 = args.silu_no_half2
    config.concurrent_streams = args.concurrent_streams

    if args.theta:
        config.rotary_embedding_base = args.theta

    return config


# Global state

def set_globals(args):

    if args.affinity: set_affinity_str(args.affinity)


# Print stats after loading model

def print_stats(model):

    print(f" -- Groupsize (inferred): {model.config.groupsize if model.config.groupsize is not None else 'None'}")
    print(f" -- Act-order (inferred): {'yes' if model.config.act_order else 'no'}")
    if model.config.empty_g_idx:
        print(f" !! Model has empty group index (discarded)")