File size: 9,211 Bytes
72268ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
from model import ExLlama, ExLlamaCache, ExLlamaConfig
from tokenizer import ExLlamaTokenizer
from generator import ExLlamaGenerator
from lora import ExLlamaLora
import perplexity
from perplexity import Perplexity
import time
import torch
import torch.nn.functional as F
import argparse
import json
import math
import sys
import os
import glob
import model_init
torch.cuda._lazy_init()
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
torch.set_printoptions(precision = 10)
torch_devices = [f"cuda:{i}" for i in range(torch.cuda.device_count())]
cache = None
model = None
def begin():
global model, cache
if cache is None: cache = ExLlamaCache(model)
else: cache.current_seq_len = 0
def next_logits(input_ids, apply_lora, last_id_only = True, input_mask = None):
global model, cache
# n_logits = None
# a = 0
# while a < input_ids.shape[-1]:
# b = min(input_ids.shape[-1], a + 2048)
# n_logits = model.forward(input_ids[:, a:b], cache, last_id_only, lora = apply_lora, input_mask = input_mask)
# a = b
n_logits = model.forward(input_ids, cache, last_id_only, lora=apply_lora, input_mask=input_mask)
return n_logits
def tokenize(text):
global tokenizer
return tokenizer.encode(text)
def timer(name, func):
t = time.time()
ret = func()
t = time.time() - t
print(f" ** Time, {name}: {t:.2f} seconds")
return ret
mem_base = {}
mem_last = {}
for dev in torch_devices:
torch.cuda.reset_peak_memory_stats(dev)
mem_base[dev] = mem_last[dev] = torch.cuda.max_memory_allocated(dev)
def mem(name, total = False):
global mem_base, mem_last
res = f" ** VRAM, {name}: "
first = True
for device in torch_devices:
mem_c = torch.cuda.max_memory_allocated(device)
mem_this = mem_c - mem_last[device] if not total else mem_c - mem_base[device]
mem_last[device] = mem_c
if not first: res += " - "
first = False
res += f"[{device}] {mem_this / (1024 ** 2):,.2f} MB"
print(res)
# Parse arguments
parser = argparse.ArgumentParser(description = "Benchmark tests for ExLlama")
model_init.add_args(parser)
perplexity.add_args(parser)
parser.add_argument("-p", "--perf", action = "store_true", help = "Benchmark speed and VRAM usage")
parser.add_argument("-v", "--validate", action = "count", help = "Run validation check and generate some sample output; specify twice for a more thorough test")
parser.add_argument("-lora", "--lora", type = str, help = "Path to LoRA binary to use during benchmark")
parser.add_argument("-loracfg", "--lora_config", type = str, help = "Path to LoRA config to use during benchmark")
parser.add_argument("-ld", "--lora_dir", type = str, help = "Path to LoRA config and binary. to use during benchmark")
args = parser.parse_args()
model_init.post_parse(args)
perplexity.post_parse(args)
model_init.get_model_files(args)
# Paths
if args.lora_dir is not None:
args.lora_config = os.path.join(args.lora_dir, "adapter_config.json")
args.lora = os.path.join(args.lora_dir, "adapter_model.bin")
# Feedback
print_opts = []
if args.perf: print_opts.append("perf")
if args.validate: print_opts.append("validate")
if args.perplexity: print_opts.append("perplexity")
if args.perplexity_token: print_opts.append("perplexity_token")
model_init.print_options(args, print_opts)
# Globals
model_init.set_globals(args)
# Instantiate model
config = model_init.make_config(args)
model = timer("Load model", lambda: ExLlama(config))
tokenizer = timer("Load tokenizer", lambda: ExLlamaTokenizer(args.tokenizer))
model_init.print_stats(model)
torch.cuda.reset_peak_memory_stats("cuda")
mem("Model")
cache = ExLlamaCache(model)
mem("Cache")
# Load LoRA
lora = None
if args.lora:
print(f" -- LoRA config: {args.lora_config}")
print(f" -- Loading LoRA: {args.lora}")
if args.lora_config is None:
print(f" ## Error: please specify lora path to adapter_config.json")
sys.exit()
lora = ExLlamaLora(model, args.lora_config, args.lora)
if lora.bias_ignored:
print(f" !! Warning: LoRA zero bias ignored")
# Test sequence
gen_tokens = 128
max_seq_len = args.length
ids = torch.randint(0, 31999, (1, max_seq_len - gen_tokens)).cuda()
# Benchmark memory and performance
if args.perf:
# Warming up apparently makes a huge difference
for i in range(1, 3):
print(f" -- Warmup pass {i}...")
begin()
logits = timer("Warmup", lambda: next_logits(ids, lora))
# Do the actual benchmark
begin()
t = time.time()
print(" -- Inference, first pass.")
logits = timer("Inference", lambda: next_logits(ids, lora))
t = time.time() - t
print(f" ** Speed: {ids.shape[-1] / t:.2f} tokens/second")
for j in range(2):
t = time.time()
print(f" -- Generating {gen_tokens} tokens, {ids.shape[-1]} token prompt...")
for i in range(gen_tokens):
logits = logits[0, -1, :]
token = torch.argmax(logits)
next_id = token.unsqueeze(0).unsqueeze(0)
logits = next_logits(next_id, lora)
t = time.time() - t
print(f" ** Speed: {gen_tokens / t:.2f} tokens/second")
ids = ids[:, :4]
cache.current_seq_len = 4
mem("Inference")
mem("Total", total = True)
# Benchmark perplexity
if args.perplexity:
ppl = Perplexity(args.perplexity, model, cache, tokenizer)
print(" -- Loading dataset...")
ppl.load(dataset_path = args.perplexity_dataset,
chunk_size = args.perplexity_chunk_size,
chunk_truncate = args.perplexity_chunk_truncate,
overlap = args.perplexity_chunk_overlap,
minlength = args.perplexity_chunk_min,
json_key = args.perplexity_json_key)
begin()
ppl.test(args.perplexity_chunk_num,
lora = lora,
ppl_token = args.perplexity_token)
# Validate file
if args.validate:
ppl = Perplexity(args.perplexity, model, cache, tokenizer)
ppl.load(dataset_path = "datasets/wikitext2_val_sample.jsonl",
chunk_size = 2048,
chunk_truncate = 2048,
overlap = 0,
minlength = 50,
json_key = "text")
# Short perplexity tests in switched and quant mode, should produce roughly equal results
begin()
ppl.cache.zero()
model.config.matmul_recons_thd = 1
ppl.test(8, lora = lora, tag = " (reconstruct)")
ppl.cache.zero()
model.config.matmul_recons_thd = 0
ppl.test(8, lora = lora, tag = " (quant, token)", ppl_token = True)
# Do a short, easy topk=1 completion to see if we're generating garbage. Should run in switched mode
# for the prompt and quant for individual tokens
model.config.matmul_recons_thd = 4
generator = ExLlamaGenerator(model, tokenizer, cache)
generator.settings.top_k = 1
generator.lora = lora
text = generator.generate_simple("To be or not to be, that is the", max_new_tokens = 20 * args.validate)
print(f" ** Generation: {repr(text)}")
if args.validate > 1:
# Test batched generation
bsz = 8
gen_len = 20
torch.manual_seed(42)
torch.cuda.manual_seed_all(42)
# Bigger cache for the batch
del cache
cache = ExLlamaCache(model, batch_size = bsz)
# Create tokenized batch and attention mask
identical_batch_prompt = "When you have eliminated the impossible, whatever remains,"
continuations = [
" must be considered",
" ought to be",
" (and some scholars say this is",
" however improbable, is a banana.",
]
prompts = [identical_batch_prompt] * (bsz - len(continuations))
for cont in continuations:
prompts.append(identical_batch_prompt + cont)
ids = tokenizer.encode(prompts)
assert ids.shape[1] < model.config.max_seq_len, f"Max length {ids.shape[1]} exceeds model limit {model.config.max_seq_len}"
mask = ids.ne(tokenizer.pad_token_id)
# Batched generation with greedy sampling
sequence = torch.empty((bsz, 0), dtype = torch.long, device = "cpu")
logits = next_logits(ids, lora, input_mask = mask)
for i in range(gen_len):
logits = logits[:, -1, :]
id_per_batch = torch.argmax(logits, dim=-1)
assert id_per_batch.shape == (bsz,), f"{id_per_batch.shape} != {(bsz,)}"
next_id_per_batch = id_per_batch.unsqueeze(-1)
sequence = torch.cat((sequence, next_id_per_batch), dim = -1)
logits = next_logits(next_id_per_batch, lora)
# Print output batch
print(f"\n ** Batching sanity check: 1-{bsz - len(continuations)} should be identical. All should be reasonable for the model you're using.\n")
outputs = tokenizer.decode(sequence)
for b in range(bsz):
print(f"{b + 1} {repr(prompts[b])} -> {repr(outputs[b])}")
# TODO Save the logits and then rerun each prompt with a batch size of 1, same input. The logits should be identical.
|