Doa-doa's picture
Upload folder using huggingface_hub
72268ee
from codecs import IncrementalDecoder
from functools import lru_cache
from typing import List, Set, Optional, Tuple, Dict
import importlib
from charset_normalizer.models import CoherenceMatches
from charset_normalizer.utils import unicode_range, is_unicode_range_secondary, is_multi_byte_encoding
from charset_normalizer.md import is_suspiciously_successive_range
from charset_normalizer.assets import FREQUENCIES
from collections import Counter
def encoding_unicode_range(iana_name: str) -> List[str]:
"""
Return associated unicode ranges in a single byte code page.
"""
if is_multi_byte_encoding(iana_name):
raise IOError("Function not supported on multi-byte code page")
decoder = importlib.import_module('encodings.{}'.format(iana_name)).IncrementalDecoder # type: ignore
p = decoder(errors="ignore") # type: IncrementalDecoder
seen_ranges = set() # type: Set[str]
for i in range(48, 255):
chunk = p.decode(
bytes([i])
) # type: str
if chunk:
character_range = unicode_range(chunk) # type: Optional[str]
if character_range is None:
continue
if is_unicode_range_secondary(character_range) is False:
seen_ranges.add(character_range)
return sorted(list(seen_ranges))
def unicode_range_languages(primary_range: str) -> List[str]:
"""
Return inferred languages used with a unicode range.
"""
languages = [] # type: List[str]
for language, characters in FREQUENCIES.items():
for character in characters:
if unicode_range(character) == primary_range:
languages.append(language)
break
return languages
@lru_cache()
def encoding_languages(iana_name: str) -> List[str]:
"""
Single-byte encoding language association. Some code page are heavily linked to particular language(s).
This function does the correspondence.
"""
unicode_ranges = encoding_unicode_range(iana_name) # type: List[str]
primary_range = None # type: Optional[str]
for specified_range in unicode_ranges:
if "Latin" not in specified_range:
primary_range = specified_range
break
if primary_range is None:
return ["Latin Based"]
return unicode_range_languages(primary_range)
def mb_encoding_languages(iana_name: str) -> List[str]:
"""
Multi-byte encoding language association. Some code page are heavily linked to particular language(s).
This function does the correspondence.
"""
if iana_name.startswith("shift_") or iana_name.startswith("iso2022_jp") or iana_name.startswith("euc_j") or iana_name in {"cp932"}:
return ["Japanese"]
if iana_name.startswith("gb") or iana_name in {"big5", "cp950", "big5hkscs"}:
return ["Chinese", "Classical Chinese"]
if iana_name.startswith("iso2022_kr") or iana_name in {"johab", "cp949", "euc_kr"}:
return ["Korean"]
return []
def alphabet_languages(characters: List[str]) -> List[str]:
"""
Return associated languages associated to given characters.
"""
languages = [] # type: List[str]
for language, language_characters in FREQUENCIES.items():
character_match_count = 0 # type: int
character_count = len(language_characters) # type: int
for character in language_characters:
if character in characters:
character_match_count += 1
if character_match_count / character_count >= 0.2:
languages.append(language)
return languages
def characters_popularity_compare(language: str, ordered_characters: List[str]) -> float:
"""
Determine if a ordered characters list (by occurrence from most appearance to rarest) match a particular language.
The result is a ratio between 0. (absolutely no correspondence) and 1. (near perfect fit).
Beware that is function is not strict on the match in order to ease the detection. (Meaning close match is 1.)
"""
if language not in FREQUENCIES:
raise ValueError("{} not available".format(language))
character_approved_count = 0 # type: int
for character in ordered_characters:
if character not in FREQUENCIES[language]:
continue
characters_before_source = FREQUENCIES[language][0:FREQUENCIES[language].index(character)] # type: List[str]
characters_after_source = FREQUENCIES[language][FREQUENCIES[language].index(character):] # type: List[str]
characters_before = ordered_characters[0:ordered_characters.index(character)] # type: List[str]
characters_after = ordered_characters[ordered_characters.index(character):] # type: List[str]
before_match_count = [e in characters_before for e in characters_before_source].count(True) # type: int
after_match_count = [e in characters_after for e in characters_after_source].count(True) # type: int
if len(characters_before_source) == 0 and before_match_count <= 4:
character_approved_count += 1
continue
if len(characters_after_source) == 0 and after_match_count <= 4:
character_approved_count += 1
continue
if before_match_count / len(characters_before_source) >= 0.4 or after_match_count / len(characters_after_source) >= 0.4:
character_approved_count += 1
continue
return character_approved_count / len(ordered_characters)
def alpha_unicode_split(decoded_sequence: str) -> List[str]:
"""
Given a decoded text sequence, return a list of str. Unicode range / alphabet separation.
Ex. a text containing English/Latin with a bit a Hebrew will return two items in the resulting list;
One containing the latin letters and the other hebrew.
"""
layers = {} # type: Dict[str, str]
for character in decoded_sequence:
if character.isalpha() is False:
continue
character_range = unicode_range(character) # type: str
layer_target_range = None # type: Optional[str]
for discovered_range in layers:
if is_suspiciously_successive_range(discovered_range, character_range) is False:
layer_target_range = discovered_range
break
if layer_target_range is None:
layer_target_range = character_range
if layer_target_range not in layers:
layers[layer_target_range] = character.lower()
continue
layers[layer_target_range] += character.lower()
return list(layers.values())
def merge_coherence_ratios(results: List[CoherenceMatches]) -> CoherenceMatches:
"""
This function merge results previously given by the function coherence_ratio.
The return type is the same as coherence_ratio.
"""
per_language_ratios = {} # type: Dict[str, List[float]]
merge = [] # type: CoherenceMatches
for result in results:
for sub_result in result:
language, ratio = sub_result
if language not in per_language_ratios:
per_language_ratios[language] = [ratio]
continue
per_language_ratios[language].append(
ratio
)
for language in per_language_ratios:
merge.append(
(
language,
round(
sum(
per_language_ratios[language]
) / len(per_language_ratios[language]),
4
)
)
)
return sorted(merge, key=lambda x: x[1], reverse=True)
@lru_cache(maxsize=2048)
def coherence_ratio(decoded_sequence: str, threshold: float = 0.1, lg_inclusion: Optional[str] = None) -> CoherenceMatches:
"""
Detect ANY language that can be identified in given sequence. The sequence will be analysed by layers.
A layer = Character extraction by alphabets/ranges.
"""
results = [] # type: List[Tuple[str, float]]
sufficient_match_count = 0 # type: int
if lg_inclusion is not None:
lg_inclusion = lg_inclusion.split(",")
if lg_inclusion is not None and "Latin Based" in lg_inclusion:
lg_inclusion.remove("Latin Based")
for layer in alpha_unicode_split(decoded_sequence):
sequence_frequencies = Counter(layer) # type: Counter
most_common = sequence_frequencies.most_common()
character_count = sum([o for c, o in most_common]) # type: int
if character_count <= 32:
continue
popular_character_ordered = [c for c, o in most_common] # type: List[str]
for language in lg_inclusion or alphabet_languages(popular_character_ordered):
ratio = characters_popularity_compare(language, popular_character_ordered) # type: float
if ratio < threshold:
continue
elif ratio >= 0.8:
sufficient_match_count += 1
results.append(
(language, round(ratio, 4))
)
if sufficient_match_count >= 3:
break
return sorted(results, key=lambda x: x[1], reverse=True)