Doa-doa's picture
Upload folder using huggingface_hub
72268ee
from .base import BaseAWQForCausalLM
from typing import Dict
from transformers.models.falcon.modeling_falcon import FalconDecoderLayer as OldFalconDecoderLayer, FalconForCausalLM, FalconAttention
class FalconAWQForCausalLM(BaseAWQForCausalLM):
layer_type = "FalconDecoderLayer"
@staticmethod
def fuse_layers(model: FalconForCausalLM, quant_config: Dict):
fuser = FalconFuser(model)
# TODO: Implement correctly fused modules for Falcon 40B and Falcon 180B
if model.config.num_attention_heads == 71:
fuser.fuse_transformer()
@staticmethod
def get_model_layers(model: FalconForCausalLM):
return model.transformer.h
@staticmethod
def get_act_for_scaling(module: OldFalconDecoderLayer):
return dict(
is_scalable=True,
scale_name="mlp.act",
scale_layer=module.mlp.act,
scale_shape=module.mlp.dense_h_to_4h.out_features
)
@staticmethod
def move_embed(model: FalconForCausalLM, device):
model.transformer.word_embeddings = model.transformer.word_embeddings.to(device)
@staticmethod
def get_layers_for_scaling(module: OldFalconDecoderLayer, input_feat, module_kwargs):
layers = []
# Falcon 7B (older architecture)
if module.config.num_attention_heads == 71:
# linear 1 + attention
layers.append(dict(
prev_op=module.input_layernorm,
layers=[module.mlp.dense_h_to_4h, module.self_attention.query_key_value],
inp=input_feat['self_attention.query_key_value'],
module2inspect=module,
kwargs=module_kwargs,
))
# Falcon 40B (newer architecture)
else:
# linear 1 + attention
layers.append(dict(
prev_op=module.ln_attn,
layers=[module.self_attention.query_key_value],
inp=input_feat['self_attention.query_key_value'],
module2inspect=module,
kwargs=module_kwargs,
))
# linear 2
layers.append(dict(
prev_op=module.ln_mlp,
layers=[module.mlp.dense_h_to_4h],
inp=input_feat['mlp.dense_h_to_4h'],
module2inspect=module,
kwargs=module_kwargs,
))
return layers
from awq.modules.fused.model import FalconModel
from awq.modules.fused.block import FalconDecoderLayer
class FalconFuser:
def __init__(self, model: FalconForCausalLM):
self.model = model
def fuse_transformer(self):
blocks = []
module: OldFalconDecoderLayer
for module in self.model.transformer.h:
if module.config.num_attention_heads == 71:
input_layernorm = module.input_layernorm
ln_attn = None
ln_mlp = None
new_decoder_arch = False
else:
input_layernorm = None
ln_attn = module.ln_attn
ln_mlp = module.ln_mlp
new_decoder_arch = True
blocks.append(FalconDecoderLayer(
hidden_size=module.config.hidden_size,
n_heads=module.config.num_attention_heads,
qkv_layer=module.self_attention.query_key_value,
o_proj=module.self_attention.dense,
mlp=module.mlp,
dev=next(iter(module.state_dict().values())).device,
max_seq_len=self.model.config.max_new_tokens,
input_layernorm=input_layernorm,
ln_attn=ln_attn,
ln_mlp=ln_mlp,
new_decoder_arch=new_decoder_arch
))
self.model.transformer = FalconModel(
self.model.config.vocab_size,
blocks,
self.model.transformer.word_embeddings,
self.model.transformer.ln_f,
)