Doa-doa's picture
Upload folder using huggingface_hub
72268ee
from .base import BaseAWQForCausalLM
from transformers.models.gpt_bigcode.modeling_gpt_bigcode import GPTBigCodeForCausalLM, GPTBigCodeBlock as OldGptBigCodeBlock
class GptBigCodeAWQForCausalLM(BaseAWQForCausalLM):
layer_type = "GPTBigCodeBlock"
max_new_tokens_key = "n_positions"
@staticmethod
def get_model_layers(model: GPTBigCodeForCausalLM):
return model.transformer.h
@staticmethod
def get_act_for_scaling(module: OldGptBigCodeBlock):
return dict(
is_scalable=True,
scale_name="mlp.act",
scale_layer=module.mlp.act,
scale_shape=module.mlp.c_fc.out_features
)
@staticmethod
def move_embed(model: GPTBigCodeForCausalLM, device):
model.transformer.wte = model.transformer.wte.to(device)
model.transformer.drop = model.transformer.drop.to(device)
@staticmethod
def get_layers_for_scaling(module:OldGptBigCodeBlock, input_feat, module_kwargs):
layers = []
# attention input
layers.append(dict(
prev_op=module.ln_1,
layers=[module.attn.c_attn],
inp=input_feat['attn.c_attn'],
module2inspect=module.attn,
kwargs=module_kwargs
))
# linear 1
layers.append(dict(
prev_op=module.ln_2,
layers=[module.mlp.c_fc],
inp=input_feat['mlp.c_fc'],
module2inspect=module.mlp
))
# linear 2
layers.append(dict(
prev_op=module.mlp.act,
layers=[module.mlp.c_proj],
inp=input_feat['mlp.c_proj']
))
return layers