Doa-doa's picture
Upload folder using huggingface_hub
72268ee
from .base import BaseAWQForCausalLM
from transformers.models.opt.modeling_opt import OPTForCausalLM, OPTDecoderLayer
class OptAWQForCausalLM(BaseAWQForCausalLM):
layer_type = "OPTDecoderLayer"
max_new_tokens_key = "max_position_embeddings"
@staticmethod
def get_model_layers(model: OPTForCausalLM):
return model.model.decoder.layers
@staticmethod
def get_act_for_scaling(module: OPTDecoderLayer):
return dict(
is_scalable=False
)
@staticmethod
def move_embed(model: OPTForCausalLM, device: str):
model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.to(device)
model.model.decoder.embed_positions = model.model.decoder.embed_positions.to(device)
@staticmethod
def get_layers_for_scaling(module: OPTDecoderLayer, input_feat, module_kwargs):
layers = []
# attention input
layers.append(dict(
prev_op=module.self_attn_layer_norm,
layers=[
module.self_attn.q_proj,
module.self_attn.k_proj, module.self_attn.v_proj],
inp=input_feat['self_attn.q_proj'],
module2inspect=module.self_attn,
kwargs=module_kwargs,
))
# attention out
layers.append(dict(
prev_op=module.self_attn.v_proj,
layers=[module.self_attn.out_proj],
inp=input_feat['self_attn.out_proj'],
))
# linear 1
layers.append(dict(
prev_op=module.final_layer_norm,
layers=[module.fc1],
inp=input_feat['fc1'],
))
# linear 2
layers.append(dict(
prev_op=module.fc1,
layers=[module.fc2],
inp=input_feat['fc2'],
))
return layers