Doa-doa's picture
Upload folder using huggingface_hub
72268ee
import math
import torch
import torch.nn as nn
import awq_inference_engine # with CUDA kernels
def make_divisible(c, divisor):
return (c + divisor - 1) // divisor
def calculate_zeros_width(in_features, group_size=128, pack_num=8):
if group_size >= 128:
size_multiplier = 1
elif group_size == 64:
size_multiplier = 2
elif group_size == 32:
size_multiplier = 4
else:
raise NotImplementedError
base_width = make_divisible(in_features // group_size, pack_num)
base_width = make_divisible(base_width, size_multiplier) * size_multiplier
return base_width
class WQLinear_GEMM(nn.Module):
def __init__(self, w_bit, group_size, in_features, out_features, bias, dev):
super().__init__()
if w_bit not in [4]:
raise NotImplementedError("Only 4-bit are supported for now.")
self.in_features = in_features
self.out_features = out_features
self.w_bit = w_bit
self.group_size = group_size if group_size != -1 else in_features
# quick sanity check (make sure aligment)
assert self.in_features % self.group_size == 0
assert out_features % (32 // self.w_bit) == 0
self.register_buffer('qweight', torch.zeros((in_features, out_features // (32 // self.w_bit)), dtype=torch.int32, device=dev))
self.register_buffer('qzeros', torch.zeros((in_features // self.group_size, out_features // (32 // self.w_bit)), dtype=torch.int32, device=dev))
self.register_buffer('scales', torch.zeros((in_features // self.group_size, out_features), dtype=torch.float16, device=dev))
if bias:
self.register_buffer('bias', torch.zeros((out_features), dtype=torch.float16, device=dev))
else:
self.bias = None
@classmethod
def from_linear(cls, linear, w_bit, group_size, init_only=False, scales=None, zeros=None):
awq_linear = cls(w_bit, group_size, linear.in_features, linear.out_features, linear.bias is not None, linear.weight.device)
if init_only: # just prepare for loading sd
return awq_linear
# need scales and zeros info for real quantization
assert scales is not None and zeros is not None
scale_zeros = zeros * scales
awq_linear.scales = scales.clone().half()
if linear.bias is not None:
awq_linear.bias = linear.bias.clone().half()
pack_num = 32 // awq_linear.w_bit
intweight = []
for idx in range(awq_linear.in_features):
intweight.append(torch.round((linear.weight.data[:, idx] + scale_zeros[idx // group_size]) / awq_linear.scales[idx // group_size]).to(torch.int)[:, None])
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.to(dtype=torch.int32)
qweight = torch.zeros((intweight.shape[0], intweight.shape[1] // 32 * awq_linear.w_bit), dtype=torch.int32, device=intweight.device)
for col in range(intweight.shape[1] // pack_num):
if awq_linear.w_bit == 4:
order_map = [0, 2, 4, 6, 1, 3, 5, 7]
else:
raise NotImplementedError("Only 4-bit are supported for now.")
for i in range(pack_num):
qweight_col = intweight[:, col * pack_num + order_map[i]]
qweight[:, col] |= qweight_col << (i * awq_linear.w_bit)
awq_linear.qweight = qweight
zeros = zeros.to(dtype=torch.int32)
qzeros = torch.zeros((zeros.shape[0], zeros.shape[1] // 32 * awq_linear.w_bit), dtype=torch.int32, device=zeros.device)
for col in range(zeros.shape[1] // pack_num):
if awq_linear.w_bit == 4:
order_map = [0, 2, 4, 6, 1, 3, 5, 7]
else:
raise NotImplementedError("Only 4-bit are supported for now.")
for i in range(pack_num):
qzero_col = zeros[:, col * pack_num + order_map[i]]
qzeros[:, col] |= qzero_col << (i * awq_linear.w_bit)
awq_linear.qzeros = qzeros
return awq_linear
@torch.no_grad()
def forward(self, x):
out_shape = x.shape[:-1] + (self.out_features, )
out = awq_inference_engine.gemm_forward_cuda(x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, 8)
out = out + self.bias if self.bias is not None else out
return out.reshape(out_shape)
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, bias={}, w_bit={}, group_size={}'.format(
self.in_features, self.out_features, self.bias is not None, self.w_bit, self.group_size
)
class WQLinear_GEMV(nn.Module):
def __init__(self, w_bit, group_size, in_features, out_features, bias, dev):
super().__init__()
if w_bit not in [4]:
raise NotImplementedError("Only 4-bit are supported for now.")
self.in_features = in_features
self.out_features = out_features
self.w_bit = w_bit
self.group_size = group_size if group_size != -1 else in_features
self.split_k_iters = 8
# quick sanity check (make sure aligment)
assert self.in_features % self.group_size == 0
assert out_features % (32 // self.w_bit) == 0
pack_num = (32 // self.w_bit)
self.register_buffer('qweight', torch.zeros((out_features, in_features // pack_num), dtype=torch.int32, device=dev))
self.register_buffer('qzeros', torch.zeros((out_features, calculate_zeros_width(in_features, self.group_size)), dtype=torch.int32, device=dev))
self.register_buffer('scales', torch.zeros((out_features, calculate_zeros_width(in_features, self.group_size) * pack_num), dtype=torch.float16, device=dev))
if bias:
self.register_buffer('bias', torch.zeros((out_features), dtype=torch.float16, device=dev))
else:
self.bias = None
@classmethod
def from_linear(cls, linear, w_bit, group_size, init_only=False, scales=None, zeros=None):
awq_linear = cls(w_bit, group_size, linear.in_features, linear.out_features, linear.bias is not None, linear.weight.device)
if init_only: # just prepare for loading sd
return awq_linear
# need scales and zeros info for real quantization
assert scales is not None and zeros is not None
scale_zeros = zeros * scales
pack_num = 32 // awq_linear.w_bit
qscales = torch.zeros(
(scales.shape[0], calculate_zeros_width(linear.in_features, group_size) * pack_num),
dtype=torch.float16,
device=scales.device
)
qscales[:, :scales.shape[1]] = scales
awq_linear.scales = qscales
if linear.bias is not None:
awq_linear.bias = linear.bias.clone().half()
intweight = []
for idx in range(awq_linear.in_features):
intweight.append(torch.round((linear.weight.data[:, idx] + scale_zeros[:, idx // group_size]) / awq_linear.scales[:, idx // group_size]).to(torch.int)[:, None])
intweight = torch.cat(intweight, dim=1)
intweight = intweight.to(dtype=torch.int32)
qweight = torch.zeros((intweight.shape[0], intweight.shape[1] // 32 * awq_linear.w_bit), dtype=torch.int32, device=intweight.device)
for col in range(intweight.shape[1] // pack_num):
if awq_linear.w_bit == 4:
order_map = [0, 1, 2, 3, 4, 5, 6, 7]
else:
raise NotImplementedError("Only 4-bit are supported for now.")
for i in range(pack_num):
qweight_col = intweight[:, col * pack_num + order_map[i]]
qweight[:, col] |= qweight_col << (i * awq_linear.w_bit)
awq_linear.qweight = qweight
zeros = zeros.to(dtype=torch.int32)
qzeros = torch.zeros(
(zeros.shape[0], calculate_zeros_width(linear.in_features, group_size)),
dtype=torch.int32,
device=zeros.device,
)
for col in range((zeros.shape[1] + pack_num - 1) // pack_num):
if awq_linear.w_bit == 4:
order_map = [0, 1, 2, 3, 4, 5, 6, 7]
else:
raise NotImplementedError("Only 4-bit are supported for now.")
for i in range(pack_num):
if col * pack_num + order_map[i] >= zeros.shape[1]:
continue
qzero_col = zeros[:, col * pack_num + order_map[i]]
qzeros[:, col] |= qzero_col << (i * awq_linear.w_bit)
awq_linear.qzeros = qzeros
return awq_linear
@torch.no_grad()
def forward(self, x):
out_shape = x.shape[:-1] + (self.out_features, )
inputs = x.reshape(-1, x.shape[-1])
if inputs.shape[0] > 8:
out = awq_inference_engine.gemmv2_forward_cuda(inputs, self.qweight, self.scales, self.qzeros, self.group_size, self.split_k_iters)
else:
out = awq_inference_engine.gemv_forward_cuda(inputs, self.qweight, self.scales, self.qzeros, self.group_size)
out = out + self.bias if self.bias is not None else out
return out.reshape(out_shape)
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, bias={}, w_bit={}, group_size={}'.format(
self.in_features, self.out_features, self.bias is not None, self.w_bit, self.group_size
)