# import torch | |
# from tokenizer import ExLlamaTokenizer | |
from datasets import load_dataset | |
import os | |
# Download samples from HF datasets to run equivalent GPTQ-for-LLaMa equivalent benchmark | |
def download_hf(filename, dataset, subset, split, key, div): | |
print(f"Downloading from {dataset}: {subset}, split: {split} ...") | |
hf_dataset = load_dataset(dataset, subset, split = split) | |
data = div.join(hf_dataset[key]) | |
with open(filename, "w", encoding="utf-8") as f: | |
f.write(data) | |
download_hf("wikitext2.txt", "wikitext", "wikitext-2-raw-v1", "test", "text", "\n\n") | |
download_hf("ptb.txt", "ptb_text_only", "penn_treebank", "validation", "sentence", "\n\n") | |
download_hf("ptb_new.txt", "ptb_text_only", "penn_treebank", "test", "sentence", " ") | |