import os from transformers import AutoConfig from awq.models import * from awq.models.base import BaseAWQForCausalLM AWQ_CAUSAL_LM_MODEL_MAP = { "mpt": MptAWQForCausalLM, "llama": LlamaAWQForCausalLM, "opt": OptAWQForCausalLM, "RefinedWeb": FalconAWQForCausalLM, "RefinedWebModel": FalconAWQForCausalLM, "falcon": FalconAWQForCausalLM, "bloom": BloomAWQForCausalLM, "gptj": GPTJAWQForCausalLM, "gpt_bigcode": GptBigCodeAWQForCausalLM, "mistral": MistralAWQForCausalLM } def check_and_get_model_type(model_dir, trust_remote_code=True): config = AutoConfig.from_pretrained(model_dir, trust_remote_code=trust_remote_code) if config.model_type not in AWQ_CAUSAL_LM_MODEL_MAP.keys(): raise TypeError(f"{config.model_type} isn't supported yet.") model_type = config.model_type return model_type class AutoAWQForCausalLM: def __init__(self): raise EnvironmentError('You must instantiate AutoAWQForCausalLM with\n' 'AutoAWQForCausalLM.from_quantized or AutoAWQForCausalLM.from_pretrained') @classmethod def from_pretrained(self, model_path, trust_remote_code=True, safetensors=False, device_map=None, **model_init_kwargs) -> BaseAWQForCausalLM: model_type = check_and_get_model_type(model_path, trust_remote_code) return AWQ_CAUSAL_LM_MODEL_MAP[model_type].from_pretrained( model_path, model_type, trust_remote_code=trust_remote_code, safetensors=safetensors, device_map=device_map, **model_init_kwargs ) @classmethod def from_quantized(self, quant_path, quant_filename='', max_new_tokens=None, trust_remote_code=True, fuse_layers=True, batch_size=1, safetensors=False, max_memory=None, offload_folder=None) -> BaseAWQForCausalLM: os.environ["AWQ_BATCH_SIZE"] = str(batch_size) model_type = check_and_get_model_type(quant_path, trust_remote_code) return AWQ_CAUSAL_LM_MODEL_MAP[model_type].from_quantized( quant_path, model_type, quant_filename, max_new_tokens, trust_remote_code=trust_remote_code, fuse_layers=fuse_layers, safetensors=safetensors, max_memory=max_memory, offload_folder=offload_folder )