from .base import BaseAWQForCausalLM from transformers.models.bloom.modeling_bloom import BloomForCausalLM, BloomBlock class BloomAWQForCausalLM(BaseAWQForCausalLM): layer_type = "BloomBlock" @staticmethod def get_model_layers(model: BloomForCausalLM): return model.transformer.h @staticmethod def get_act_for_scaling(module: BloomBlock): return dict( is_scalable=True, scale_name="mlp.gelu_impl", scale_layer=module.mlp.gelu_impl, scale_shape=module.mlp.dense_h_to_4h.out_features ) @staticmethod def move_embed(model: BloomForCausalLM, device: str): model.transformer.word_embeddings = model.transformer.word_embeddings.to(device) model.transformer.word_embeddings_layernorm = model.transformer.word_embeddings_layernorm.to(device) @staticmethod def get_layers_for_scaling(module: BloomBlock, input_feat, module_kwargs): layers = [] # attention input layers.append(dict( prev_op=module.input_layernorm, layers=[module.self_attention.query_key_value], inp=input_feat['self_attention.query_key_value'], module2inspect=module, kwargs=module_kwargs, )) # attention out # Please refer to https://github.com/mit-han-lab/llm-awq/issues/2#issuecomment-1606297469 """ scales_list.append(_auto_get_scale( prev_op=module.self_attention.query_key_value, layers=[module.self_attention.dense], inp=input_feat['self_attention.dense'], )) """ # linear 1 layers.append(dict( prev_op=module.post_attention_layernorm, layers=[module.mlp.dense_h_to_4h], inp=input_feat['mlp.dense_h_to_4h'], module2inspect=module, kwargs=module_kwargs, )) # linear 2 layers.append(dict( prev_op=module.mlp.gelu_impl, layers=[module.mlp.dense_4h_to_h], inp=input_feat['mlp.dense_4h_to_h'], )) return layers