from .base import BaseAWQForCausalLM from transformers.models.gptj.modeling_gptj import GPTJForCausalLM, GPTJBlock class GPTJAWQForCausalLM(BaseAWQForCausalLM): layer_type = "GPTJBlock" max_new_tokens_key = "n_positions" @staticmethod def get_model_layers(model: GPTJForCausalLM): return model.transformer.h @staticmethod def get_act_for_scaling(module: GPTJBlock): return dict( is_scalable=True, scale_name="mlp.act", scale_layer=module.mlp.act, scale_shape=module.mlp.fc_in.out_features ) @staticmethod def move_embed(model: GPTJForCausalLM, device: str): model.transformer.wte = model.transformer.wte.to(device) @staticmethod def get_layers_for_scaling(module: GPTJBlock, input_feat, module_kwargs): layers = [] # attention input + linear 1 layers.append(dict( prev_op=module.ln_1, layers=[module.attn.q_proj, module.attn.k_proj, module.attn.v_proj, module.mlp.fc_in], inp=input_feat['attn.q_proj'], module2inspect=module, kwargs=module_kwargs )) # attention out layers.append(dict( prev_op=module.attn.v_proj, layers=[module.attn.out_proj], inp=input_feat['attn.out_proj'], )) # linear 2 layers.append(dict( prev_op=module.mlp.act, layers=[module.mlp.fc_out], inp=input_feat['mlp.fc_out'], )) return layers