import torch import logging from typing import List, Union from datasets import load_dataset def get_calib_dataset(data: Union[str, List[str]] = "pileval", tokenizer=None, n_samples=512, block_size=512, split="train", text_column="text"): if isinstance(data, str): if data == "pileval": dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation") else: dataset = load_dataset(data, split=split) dataset = dataset.shuffle(seed=42) elif isinstance(data, list): dataset = [{text_column: text} for text in data] else: raise NotImplementedError( "Either pass a string to a huggingface dataset or a list" "that is preprocessed with one sample of text per element.") samples = [] n_run = 0 for data in dataset: line = data[text_column] line = line.strip() line_encoded = tokenizer.encode(line) if len(line_encoded) > 512: continue sample = torch.tensor([line_encoded]) if sample.numel() == 0: continue samples.append(sample) n_run += 1 if n_run == n_samples: break # now concatenate all samples and split according to block size cat_samples = torch.cat(samples, dim=1) n_split = cat_samples.shape[1] // block_size logging.debug(f" * Split into {n_split} blocks") return [cat_samples[:, i*block_size:(i+1)*block_size] for i in range(n_split)]