Spaces:
Sleeping
Sleeping
import streamlit as st | |
from ragchatbot import RAGChatBot | |
from pydantic_models import RequestModel, ChatHistoryItem | |
def validate_chat_history_item(chat_history_item: ChatHistoryItem): | |
return ChatHistoryItem.model_validate(chat_history_item.model_dump()) | |
st.set_page_config(page_title="RAG-Chatbot", page_icon=":mag:", layout="wide") | |
st.title("Test Contextual Retrieval - KCS10") | |
col1, col2, col3 = st.columns(3) | |
col1.title("Contextual Chunking") | |
col2.title("Current Model") | |
col3.title("Formatted Text") | |
if "context_ragchatbot" not in st.session_state: | |
st.session_state.context_ragchatbot = RAGChatBot(vectorstore_path="context_vectorstore") | |
if "formatted_ragchatbot" not in st.session_state: | |
st.session_state.formatted_ragchatbot = RAGChatBot(vectorstore_path="formatted_vectorstore") | |
if "just_ragchatbot" not in st.session_state: | |
st.session_state.just_ragchatbot = RAGChatBot(vectorstore_path="just_vectorstore") | |
if "context_chat_history" not in st.session_state: | |
st.session_state.context_chat_history = [] | |
if "formatted_chat_history" not in st.session_state: | |
st.session_state.formatted_chat_history = [] | |
if "just_chat_history" not in st.session_state: | |
st.session_state.just_chat_history = [] | |
for chat_index in range(0,len(st.session_state.context_chat_history)): | |
assert len(st.session_state.context_chat_history) == len(st.session_state.formatted_chat_history) == len(st.session_state.just_chat_history) | |
for col, chat_history, sources_text in zip(st.columns(3, vertical_alignment="top"), [st.session_state.context_chat_history, st.session_state.just_chat_history, st.session_state.formatted_chat_history], ["Contextual Chunking", "Current Model", "Formatted Text"]): | |
chat = chat_history[chat_index] | |
with col.chat_message("user"): | |
st.write(chat.get("user_message").replace("\n","\n\n")) | |
with col.chat_message("assistant"): | |
st.write(chat.get("assistant_message").replace("\n","\n\n")) | |
st.write(chat.get("search_phrase")) | |
for i, doc in enumerate(chat.get("sources_documents")): | |
with st.expander(f"{sources_text} Sources - {i+1}"): | |
st.subheader(f"{doc.get('heading')} - {doc.get('relevance_score')}") | |
if sources_text == "Contextual Chunking": | |
st.write(doc.get("page_content").replace("\n","\n\n").split("<chunk_content>")[1].split("</chunk_content>")[0]) | |
else: | |
st.write(doc.get("page_content").replace("\n","\n\n")) | |
# print_session_state_variables() | |
if user_query := st.chat_input("Enter your query"): | |
for col in st.columns(3, vertical_alignment="top"): | |
with col.chat_message("user"): | |
st.write(user_query.replace("\n","\n\n")) | |
with st.spinner("Generating response..."): | |
context_response = st.session_state.context_ragchatbot.get_response( | |
RequestModel(user_question=user_query, chat_history=[ChatHistoryItem(user_message=chat.get("user_message"), assistant_message=chat.get("assistant_message")) for chat in st.session_state.context_chat_history]) | |
) | |
sources_documents = [{"heading":doc.heading, "page_content":doc.page_content, "relevance_score":doc.relevance_score} for doc in context_response.sources_documents] | |
st.session_state.context_chat_history.append({ | |
"user_message": user_query, | |
"assistant_message": context_response.answer, | |
"search_phrase": context_response.search_phrase, | |
"sources_documents": sources_documents | |
}) | |
just_response = st.session_state.just_ragchatbot.get_response( | |
RequestModel(user_question=user_query, chat_history=[ChatHistoryItem(user_message=chat.get("user_message"), assistant_message=chat.get("assistant_message")) for chat in st.session_state.just_chat_history]) | |
) | |
sources_documents = [{"heading":doc.heading, "page_content":doc.page_content, "relevance_score":doc.relevance_score} for doc in just_response.sources_documents] | |
st.session_state.just_chat_history.append({ | |
"user_message": user_query, | |
"assistant_message": just_response.answer, | |
"search_phrase": just_response.search_phrase, | |
"sources_documents": sources_documents | |
}) | |
formatted_response = st.session_state.formatted_ragchatbot.get_response( | |
RequestModel(user_question=user_query, chat_history=[ChatHistoryItem(user_message=chat.get("user_message"), assistant_message=chat.get("assistant_message")) for chat in st.session_state.formatted_chat_history]) | |
) | |
sources_documents = [{"heading":doc.heading, "page_content":doc.page_content, "relevance_score":doc.relevance_score} for doc in formatted_response.sources_documents] | |
st.session_state.formatted_chat_history.append({ | |
"user_message": user_query, | |
"assistant_message": formatted_response.answer, | |
"search_phrase": formatted_response.search_phrase, | |
"sources_documents": sources_documents | |
}) | |
st.rerun() | |
# with col1.chat_message("assistant"): | |
# st.write(context_response.answer.replace("\n","\n\n")) | |
# with col1.expander("Contextual Chunking Sources"): | |
# for doc in context_response.sources_documents: | |
# st.subheader(f"{doc.heading} - {doc.relevance_score}") | |
# st.write(doc.page_content.replace("\n","\n\n").split("<chunk_content>")[1].split("</chunk_content>")[0]) | |
# st.divider() | |
# with col2.chat_message("assistant"): | |
# st.write(just_response.answer.replace("\n","\n\n")) | |
# with st.expander("Without Contextual Chunking Sources"): | |
# st.write(just_response.chat_history[-1].search_phrase) | |
# for doc in just_response.sources_documents: | |
# st.subheader(f"{doc.heading} - {doc.relevance_score}") | |
# st.write(doc.page_content.replace("\n","\n\n")) | |
# st.divider() | |
# with col3.chat_message("assistant"): | |
# st.write(formatted_response.answer.replace("\n","\n\n")) | |
# with st.expander("Formatted Contextual Chunking Sources"): | |
# st.write(formatted_response.chat_history[-1].search_phrase) | |
# for doc in formatted_response.sources_documents: | |
# st.subheader(f"{doc.heading} - {doc.relevance_score}") | |
# st.write(doc.page_content.replace("\n","\n\n")) | |
# st.divider() | |