Spaces:
Sleeping
Sleeping
File size: 12,875 Bytes
e6e18b7 0b03ede e6e18b7 e239fba b075822 e239fba 0b03ede b075822 5c3777d 0b03ede 5c3777d 0b03ede 5c3777d 0b03ede 5c3777d e6e18b7 0b03ede b075822 5c3777d b075822 5c3777d b075822 e6e18b7 ee8270e b075822 5c3777d b075822 ee8270e b075822 0b03ede b075822 0b03ede |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# import streamlit as st
# import os
# from PyPDF2 import PdfReader
# import pymupdf
# import numpy as np
# import cv2
# import shutil
# import imageio
# from PIL import Image
# import imagehash
# import matplotlib.pyplot as plt
# from llama_index.core.indices import MultiModalVectorStoreIndex
# from llama_index.vector_stores.qdrant import QdrantVectorStore
# from llama_index.core import SimpleDirectoryReader, StorageContext
# import qdrant_client
# from llama_index.core import PromptTemplate
# from llama_index.core.query_engine import SimpleMultiModalQueryEngine
# from llama_index.llms.openai import OpenAI
# from llama_index.core import load_index_from_storage, get_response_synthesizer
# import tempfile
# from qdrant_client import QdrantClient, models
# import getpass
# curr_user = getpass.getuser()
# # from langchain.vectorstores import Chroma
# # To connect to the same event-loop,
# # allows async events to run on notebook
# # import nest_asyncio
# # nest_asyncio.apply()
# from dotenv import load_dotenv
# load_dotenv()
# def extract_text_from_pdf(pdf_path):
# reader = PdfReader(pdf_path)
# full_text = ''
# for page in reader.pages:
# text = page.extract_text()
# full_text += text
# return full_text
# def extract_images_from_pdf(pdf_path, img_save_path):
# doc = pymupdf.open(pdf_path)
# for page in doc:
# img_number = 0
# for block in page.get_text("dict")["blocks"]:
# if block['type'] == 1:
# name = os.path.join(img_save_path, f"img{page.number}-{img_number}.{block['ext']}")
# out = open(name, "wb")
# out.write(block["image"])
# out.close()
# img_number += 1
# def is_empty(img_path):
# image = cv2.imread(img_path, 0)
# std_dev = np.std(image)
# return std_dev < 1
# def move_images(source_folder, dest_folder):
# image_files = [f for f in os.listdir(source_folder)
# if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))]
# os.makedirs(dest_folder, exist_ok=True)
# moved_count = 0
# for file in image_files:
# src_path = os.path.join(source_folder, file)
# if not is_empty(src_path):
# shutil.move(src_path, os.path.join(dest_folder, file))
# moved_count += 1
# return moved_count
# def remove_low_size_images(data_path):
# images_list = os.listdir(data_path)
# low_size_photo_list = []
# for one_image in images_list:
# image_path = os.path.join(data_path, one_image)
# try:
# pic = imageio.imread(image_path)
# size = pic.size
# if size < 100:
# low_size_photo_list.append(one_image)
# except:
# pass
# for one_image in low_size_photo_list[1:]:
# os.remove(os.path.join(data_path, one_image))
# def calc_diff(img1 , img2) :
# i1 = Image.open(img1)
# i2 = Image.open(img2)
# h1 = imagehash.phash(i1)
# h2 = imagehash.phash(i2)
# return h1 - h2
# def remove_duplicate_images(data_path) :
# image_files = os.listdir(data_path)
# only_images = []
# for one_image in image_files :
# if one_image.endswith('jpeg') or one_image.endswith('png') or one_image.endswith('jpg') :
# only_images.append(one_image)
# only_images1 = sorted(only_images)
# for one_image in only_images1 :
# for another_image in only_images1 :
# try :
# if one_image == another_image :
# continue
# else :
# diff = calc_diff(os.path.join(data_path ,one_image) , os.path.join(data_path ,another_image))
# if diff ==0 :
# os.remove(os.path.join(data_path , another_image))
# except Exception as e:
# print(e)
# pass
# # from langchain_chroma import Chroma
# # import chromadb
# def initialize_qdrant(temp_dir , file_name , user):
# client = qdrant_client.QdrantClient(path=f"qdrant_mm_db_pipeline_{user}_{file_name}")
# # client = qdrant_client.QdrantClient(url = "http://localhost:2452")
# # client = qdrant_client.QdrantClient(url="4b0af7be-d5b3-47ac-b215-128ebd6aa495.europe-west3-0.gcp.cloud.qdrant.io:6333", api_key="CO1sNGLmC6R_Q45qSIUxBSX8sxwHud4MCm4as_GTI-vzQqdUs-bXqw",)
# # client = qdrant_client.AsyncQdrantClient(location = ":memory:")
# if "vectordatabase" not in st.session_state or not st.session_state.vectordatabase:
# # text_store = client.create_collection(f"text_collection_pipeline_{user}_{file_name}" )
# # image_store = client.create_collection(f"image_collection_pipeline_{user}_{file_name}" )
# text_store = QdrantVectorStore( client = client , collection_name=f"text_collection_pipeline_{user}_{file_name}" )
# image_store = QdrantVectorStore(client = client , collection_name=f"image_collection_pipeline_{user}_{file_name}")
# storage_context = StorageContext.from_defaults(vector_store=text_store, image_store=image_store)
# documents = SimpleDirectoryReader(os.path.join(temp_dir, f"my_own_data_{user}_{file_name}")).load_data()
# index = MultiModalVectorStoreIndex.from_documents(documents, storage_context=storage_context)
# st.session_state.vectordatabase = index
# else :
# index = st.session_state.vectordatabase
# retriever_engine = index.as_retriever(similarity_top_k=1, image_similarity_top_k=1)
# return retriever_engine
# def plot_images(image_paths):
# images_shown = 0
# plt.figure(figsize=(16, 9))
# for img_path in image_paths:
# if os.path.isfile(img_path):
# image = Image.open(img_path)
# plt.subplot(2, 3, images_shown + 1)
# plt.imshow(image)
# plt.xticks([])
# plt.yticks([])
# images_shown += 1
# if images_shown >= 6:
# break
# def retrieve_and_query(query, retriever_engine):
# retrieval_results = retriever_engine.retrieve(query)
# qa_tmpl_str = (
# "Context information is below.\n"
# "---------------------\n"
# "{context_str}\n"
# "---------------------\n"
# "Given the context information , "
# "answer the query in detail.\n"
# "Query: {query_str}\n"
# "Answer: "
# )
# qa_tmpl = PromptTemplate(qa_tmpl_str)
# llm = OpenAI(model="gpt-4o", temperature=0)
# response_synthesizer = get_response_synthesizer(response_mode="refine", text_qa_template=qa_tmpl, llm=llm)
# response = response_synthesizer.synthesize(query, nodes=retrieval_results)
# retrieved_image_path_list = []
# for node in retrieval_results:
# if (node.metadata['file_type'] == 'image/jpeg') or (node.metadata['file_type'] == 'image/png'):
# if node.score > 0.25:
# retrieved_image_path_list.append(node.metadata['file_path'])
# return response, retrieved_image_path_list
# #tmpnimvp35m , tmpnimvp35m , tmpydpissmv
# def process_pdf(pdf_file):
# temp_dir = tempfile.TemporaryDirectory()
# unique_folder_name = temp_dir.name.split('/')[-1]
# temp_pdf_path = os.path.join(temp_dir.name, pdf_file.name)
# with open(temp_pdf_path, "wb") as f:
# f.write(pdf_file.getvalue())
# data_path = os.path.join(temp_dir.name, f"my_own_data_{unique_folder_name}_{os.path.splitext(pdf_file.name)[0]}")
# os.makedirs(data_path , exist_ok=True)
# img_save_path = os.path.join(temp_dir.name, f"extracted_images_{unique_folder_name}_{os.path.splitext(pdf_file.name)[0]}")
# os.makedirs(img_save_path , exist_ok=True)
# extracted_text = extract_text_from_pdf(temp_pdf_path)
# with open(os.path.join(data_path, "content.txt"), "w") as file:
# file.write(extracted_text)
# extract_images_from_pdf(temp_pdf_path, img_save_path)
# moved_count = move_images(img_save_path, data_path)
# remove_low_size_images(data_path)
# remove_duplicate_images(data_path)
# retriever_engine = initialize_qdrant(temp_dir.name , os.path.splitext(pdf_file.name)[0] , unique_folder_name)
# return temp_dir, retriever_engine
# def main():
# st.title("PDF Vector Database Query Tool")
# st.markdown("This tool creates a vector database from a PDF and allows you to query it.")
# if "retriever_engine" not in st.session_state:
# st.session_state.retriever_engine = None
# if "vectordatabase" not in st.session_state:
# st.session_state.vectordatabase = None
# uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
# if uploaded_file is None:
# st.info("Please upload a PDF file.")
# else:
# st.info(f"Uploaded PDF: {uploaded_file.name}")
# if st.button("Process PDF"):
# with st.spinner("Processing PDF..."):
# temp_dir, st.session_state.retriever_engine = process_pdf(uploaded_file)
# st.success("PDF processed successfully!")
# if st.session_state.retriever_engine :
# query = st.text_input("Enter your question:")
# if st.button("Ask Question"):
# print("running")
# try:
# with st.spinner("Retrieving information..."):
# response, retrieved_image_path_list = retrieve_and_query(query, st.session_state.retriever_engine)
# print(retrieved_image_path_list)
# st.write("Retrieved Context:")
# for node in response.source_nodes:
# st.code(node.node.get_text())
# st.write("\nRetrieved Images:")
# plot_images(retrieved_image_path_list)
# st.pyplot()
# st.write("\nFinal Answer:")
# st.code(response.response)
# except Exception as e:
# st.error(f"An error occurred: {e}")
# if __name__ == "__main__":
# main()
import streamlit as st
from PIL import Image
from pdf_processing import process_pdf
from retrieve_and_display import retrieve_and_query, plot_images
from dotenv import load_dotenv
load_dotenv()
def upload_file():
if not st.session_state.filename_and_retriever_engine:
st.title("Upload File to chat with file")
else:
st.title(f"File {st.session_state.filename_and_retriever_engine[0]} loaded.")
st.info("Click on Chat in sidebar")
st.info("Upload another file if you want to chat with a different pdf")
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
if uploaded_file is None:
if not st.session_state.filename_and_retriever_engine:
st.info("Please upload a PDF file.")
else:
st.info(f"Uploaded PDF: {uploaded_file.name}")
if st.button("Process PDF"):
with st.spinner("Processing PDF..."):
st.session_state.filename_and_retriever_engine = uploaded_file.name, process_pdf(uploaded_file)
st.success("PDF processed successfully!")
st.success("Click on Chat in sidebar")
def img_display(img_path_list) :
##################### new image display function ###################################
for one_img in img_path_list :
image = Image.open(one_img)
st.image(image)
def ask_question():
if st.session_state.filename_and_retriever_engine :
st.title(f"Chat with {st.session_state.filename_and_retriever_engine[0]}")
if user_question := st.chat_input("Ask a question"):
with st.spinner("Retrieving information..."):
response, retrieved_image_path_list = retrieve_and_query(user_question, st.session_state.filename_and_retriever_engine[1])
print(retrieved_image_path_list)
st.write("Retrieved Context:")
for node in response.source_nodes:
st.code(node.node.get_text())
st.write("\nRetrieved Images:")
# plot_images(retrieved_image_path_list)
img_display(retrieved_image_path_list)
# st.pyplot()
st.write("\nFinal Answer:")
st.code(response.response)
else:
st.title("Upload File to chat with file")
def main():
if "filename_and_retriever_engine" not in st.session_state:
st.session_state.filename_and_retriever_engine = None
page_names_to_funcs = {
"Upload File": upload_file,
"Chat": ask_question
}
demo_name = st.sidebar.selectbox("PDF Query Tool", page_names_to_funcs.keys())
page_names_to_funcs[demo_name]()
if __name__ == "__main__":
# login_page()
main()
|