File size: 12,875 Bytes
e6e18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b03ede
e6e18b7
e239fba
b075822
 
e239fba
 
 
0b03ede
b075822
5c3777d
 
 
 
 
 
0b03ede
 
5c3777d
 
0b03ede
 
 
 
5c3777d
0b03ede
5c3777d
e6e18b7
 
 
 
 
 
 
0b03ede
b075822
5c3777d
 
b075822
 
5c3777d
b075822
 
 
 
 
 
e6e18b7
 
 
ee8270e
b075822
 
 
 
 
 
 
 
5c3777d
 
b075822
 
 
 
ee8270e
b075822
 
0b03ede
 
b075822
0b03ede
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# import streamlit as st
# import os
# from PyPDF2 import PdfReader
# import pymupdf
# import numpy as np
# import cv2
# import shutil
# import imageio
# from PIL import Image
# import imagehash
# import matplotlib.pyplot as plt
# from llama_index.core.indices import MultiModalVectorStoreIndex
# from llama_index.vector_stores.qdrant import QdrantVectorStore
# from llama_index.core import SimpleDirectoryReader, StorageContext
# import qdrant_client
# from llama_index.core import PromptTemplate
# from llama_index.core.query_engine import SimpleMultiModalQueryEngine
# from llama_index.llms.openai import OpenAI
# from llama_index.core import load_index_from_storage, get_response_synthesizer
# import tempfile
# from qdrant_client import QdrantClient, models
# import getpass

# curr_user = getpass.getuser()
# # from langchain.vectorstores import Chroma
# # To connect to the same event-loop,
# # allows async events to run on notebook

# # import nest_asyncio

# # nest_asyncio.apply()

# from dotenv import load_dotenv
# load_dotenv()


# def extract_text_from_pdf(pdf_path):
#     reader = PdfReader(pdf_path)
#     full_text = ''
#     for page in reader.pages:
#         text = page.extract_text()
#         full_text += text
#     return full_text

# def extract_images_from_pdf(pdf_path, img_save_path):
#     doc = pymupdf.open(pdf_path)
#     for page in doc:
#         img_number = 0
#         for block in page.get_text("dict")["blocks"]:
#             if block['type'] == 1:
#                 name = os.path.join(img_save_path, f"img{page.number}-{img_number}.{block['ext']}")
#                 out = open(name, "wb")
#                 out.write(block["image"])
#                 out.close()
#                 img_number += 1

# def is_empty(img_path):
#     image = cv2.imread(img_path, 0)
#     std_dev = np.std(image)
#     return std_dev < 1

# def move_images(source_folder, dest_folder):
#     image_files = [f for f in os.listdir(source_folder) 
#                    if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))]
#     os.makedirs(dest_folder, exist_ok=True)
#     moved_count = 0
#     for file in image_files:
#         src_path = os.path.join(source_folder, file)
#         if not is_empty(src_path):
#             shutil.move(src_path, os.path.join(dest_folder, file))
#             moved_count += 1
#     return moved_count

# def remove_low_size_images(data_path):
#     images_list = os.listdir(data_path)
#     low_size_photo_list = []
#     for one_image in images_list:
#         image_path = os.path.join(data_path, one_image)
#         try:
#             pic = imageio.imread(image_path)
#             size = pic.size
#             if size < 100:
#                 low_size_photo_list.append(one_image)
#         except:
#             pass
#     for one_image in low_size_photo_list[1:]:
#         os.remove(os.path.join(data_path, one_image))

# def calc_diff(img1 , img2) :
#     i1 = Image.open(img1)
#     i2 = Image.open(img2)
#     h1 = imagehash.phash(i1)
#     h2 = imagehash.phash(i2)
#     return h1 - h2

# def remove_duplicate_images(data_path) :
#     image_files = os.listdir(data_path)
#     only_images = []
#     for one_image in image_files : 
#         if one_image.endswith('jpeg') or one_image.endswith('png') or one_image.endswith('jpg') :
#             only_images.append(one_image)
#     only_images1 = sorted(only_images) 
#     for one_image in only_images1 :
#         for another_image in only_images1 :
#             try :
#                 if one_image == another_image :
#                     continue
#                 else :
#                     diff = calc_diff(os.path.join(data_path ,one_image) , os.path.join(data_path ,another_image))
#                     if diff ==0  :
#                         os.remove(os.path.join(data_path , another_image))
#             except Exception as e:
#                 print(e)
#                 pass
# # from langchain_chroma import Chroma
# # import chromadb
# def initialize_qdrant(temp_dir , file_name , user):
#     client = qdrant_client.QdrantClient(path=f"qdrant_mm_db_pipeline_{user}_{file_name}")
#     # client = qdrant_client.QdrantClient(url = "http://localhost:2452")    
#     # client = qdrant_client.QdrantClient(url="4b0af7be-d5b3-47ac-b215-128ebd6aa495.europe-west3-0.gcp.cloud.qdrant.io:6333", api_key="CO1sNGLmC6R_Q45qSIUxBSX8sxwHud4MCm4as_GTI-vzQqdUs-bXqw",)
#     # client = qdrant_client.AsyncQdrantClient(location = ":memory:")
        
#     if "vectordatabase" not in st.session_state or not st.session_state.vectordatabase:
            
#         # text_store = client.create_collection(f"text_collection_pipeline_{user}_{file_name}"  ) 
#         # image_store = client.create_collection(f"image_collection_pipeline_{user}_{file_name}"  ) 


#         text_store = QdrantVectorStore( client = client , collection_name=f"text_collection_pipeline_{user}_{file_name}" )
#         image_store = QdrantVectorStore(client = client , collection_name=f"image_collection_pipeline_{user}_{file_name}")
#         storage_context = StorageContext.from_defaults(vector_store=text_store, image_store=image_store)
#         documents = SimpleDirectoryReader(os.path.join(temp_dir, f"my_own_data_{user}_{file_name}")).load_data()
#         index = MultiModalVectorStoreIndex.from_documents(documents, storage_context=storage_context)

#         st.session_state.vectordatabase = index
#     else :
#         index = st.session_state.vectordatabase
#     retriever_engine = index.as_retriever(similarity_top_k=1, image_similarity_top_k=1)
#     return retriever_engine

# def plot_images(image_paths):
#     images_shown = 0
#     plt.figure(figsize=(16, 9))
#     for img_path in image_paths:
#         if os.path.isfile(img_path):
#             image = Image.open(img_path)
#             plt.subplot(2, 3, images_shown + 1)
#             plt.imshow(image)
#             plt.xticks([])
#             plt.yticks([])
#             images_shown += 1
#             if images_shown >= 6:
#                 break

# def retrieve_and_query(query, retriever_engine):
#     retrieval_results = retriever_engine.retrieve(query)
    
#     qa_tmpl_str = (
#         "Context information is below.\n"
#         "---------------------\n"
#         "{context_str}\n"
#         "---------------------\n"
#         "Given the context information , "
#         "answer the query in detail.\n"
#         "Query: {query_str}\n"
#         "Answer: "
#     )
#     qa_tmpl = PromptTemplate(qa_tmpl_str)

#     llm = OpenAI(model="gpt-4o", temperature=0)
#     response_synthesizer = get_response_synthesizer(response_mode="refine", text_qa_template=qa_tmpl, llm=llm)

#     response = response_synthesizer.synthesize(query, nodes=retrieval_results)
    
#     retrieved_image_path_list = []
#     for node in retrieval_results:
#         if (node.metadata['file_type'] == 'image/jpeg') or (node.metadata['file_type'] == 'image/png'):
#             if node.score > 0.25:
#                 retrieved_image_path_list.append(node.metadata['file_path'])
    
#     return response, retrieved_image_path_list
# #tmpnimvp35m , tmpnimvp35m , tmpydpissmv
# def process_pdf(pdf_file):
#     temp_dir = tempfile.TemporaryDirectory()
#     unique_folder_name = temp_dir.name.split('/')[-1]
#     temp_pdf_path = os.path.join(temp_dir.name, pdf_file.name)
#     with open(temp_pdf_path, "wb") as f:
#         f.write(pdf_file.getvalue())

#     data_path = os.path.join(temp_dir.name, f"my_own_data_{unique_folder_name}_{os.path.splitext(pdf_file.name)[0]}")
#     os.makedirs(data_path , exist_ok=True) 
#     img_save_path = os.path.join(temp_dir.name, f"extracted_images_{unique_folder_name}_{os.path.splitext(pdf_file.name)[0]}")
#     os.makedirs(img_save_path , exist_ok=True) 

#     extracted_text = extract_text_from_pdf(temp_pdf_path)
#     with open(os.path.join(data_path, "content.txt"), "w") as file:
#         file.write(extracted_text)

#     extract_images_from_pdf(temp_pdf_path, img_save_path)
#     moved_count = move_images(img_save_path, data_path)
#     remove_low_size_images(data_path)
#     remove_duplicate_images(data_path)
#     retriever_engine = initialize_qdrant(temp_dir.name , os.path.splitext(pdf_file.name)[0] , unique_folder_name)

#     return temp_dir, retriever_engine

# def main():
#     st.title("PDF Vector Database Query Tool")
#     st.markdown("This tool creates a vector database from a PDF and allows you to query it.")
    
#     if "retriever_engine" not in st.session_state:
#         st.session_state.retriever_engine = None
#     if "vectordatabase" not in st.session_state:
#         st.session_state.vectordatabase = None

#     uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
#     if uploaded_file is None:
#         st.info("Please upload a PDF file.")
#     else:
#         st.info(f"Uploaded PDF: {uploaded_file.name}")
#         if st.button("Process PDF"):
#             with st.spinner("Processing PDF..."):
#                 temp_dir, st.session_state.retriever_engine = process_pdf(uploaded_file)
        
#                 st.success("PDF processed successfully!")

#     if st.session_state.retriever_engine :
#         query = st.text_input("Enter your question:")
        
        
#         if st.button("Ask Question"):
#             print("running")
#             try:

#                 with st.spinner("Retrieving information..."):
#                     response, retrieved_image_path_list = retrieve_and_query(query, st.session_state.retriever_engine)
#                     print(retrieved_image_path_list)
#                 st.write("Retrieved Context:")
#                 for node in response.source_nodes:
#                     st.code(node.node.get_text())
                
#                 st.write("\nRetrieved Images:")
#                 plot_images(retrieved_image_path_list)
#                 st.pyplot()

#                 st.write("\nFinal Answer:")
#                 st.code(response.response)
            
#             except Exception as e:
#                 st.error(f"An error occurred: {e}")

# if __name__ == "__main__":
#     main()



import streamlit as st
from PIL import Image 

from pdf_processing import process_pdf
from retrieve_and_display import retrieve_and_query, plot_images

from dotenv import load_dotenv
load_dotenv()

def upload_file():
    if not st.session_state.filename_and_retriever_engine:
        st.title("Upload File to chat with file")
    else:
        st.title(f"File {st.session_state.filename_and_retriever_engine[0]} loaded.")
        st.info("Click on Chat in sidebar")
        st.info("Upload another file if you want to chat with a different pdf")
    uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
    if uploaded_file is None:
        if not st.session_state.filename_and_retriever_engine:
            st.info("Please upload a PDF file.")
    else:
        st.info(f"Uploaded PDF: {uploaded_file.name}")
        if st.button("Process PDF"):
            with st.spinner("Processing PDF..."):
                st.session_state.filename_and_retriever_engine = uploaded_file.name, process_pdf(uploaded_file)
                st.success("PDF processed successfully!")
                st.success("Click on Chat in sidebar")

def img_display(img_path_list) :
    ##################### new image display function ###################################
    for one_img in img_path_list :
        image = Image.open(one_img) 
        st.image(image)
   

def ask_question():
    if st.session_state.filename_and_retriever_engine :
        st.title(f"Chat with {st.session_state.filename_and_retriever_engine[0]}")
        if user_question := st.chat_input("Ask a question"):
            with st.spinner("Retrieving information..."):
                response, retrieved_image_path_list = retrieve_and_query(user_question, st.session_state.filename_and_retriever_engine[1])
                print(retrieved_image_path_list)
            st.write("Retrieved Context:")
            for node in response.source_nodes:
                st.code(node.node.get_text())
            
            st.write("\nRetrieved Images:")
            # plot_images(retrieved_image_path_list)
            img_display(retrieved_image_path_list)
            # st.pyplot()

            st.write("\nFinal Answer:")
            st.code(response.response)
    else:
        st.title("Upload File to chat with file")
        
    
    
def main():
    if "filename_and_retriever_engine" not in st.session_state:
        st.session_state.filename_and_retriever_engine = None
    page_names_to_funcs = {
        "Upload File": upload_file,
        "Chat": ask_question
    }

    demo_name = st.sidebar.selectbox("PDF Query Tool", page_names_to_funcs.keys())
    page_names_to_funcs[demo_name]()

if __name__ == "__main__":
    # login_page()
    main()