DocSrvNyk commited on
Commit
c1daa83
·
verified ·
1 Parent(s): f98dad1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import joblib
3
+ import numpy as np
4
+
5
+ # Load the trained model
6
+ model_path = RDF_Model_Classify_Severity_CKD.s3a
7
+ model = joblib.load(model_path)
8
+
9
+ # Define the prediction function
10
+ def predict_ckd_severity(age, c3, c4):
11
+ c3_c4_ratio = c3 / c4
12
+ features = np.array([[age, c3, c4, c3_c4_ratio]])
13
+ prediction = model.predict(features)[0]
14
+ probability = model.predict_proba(features)[0][prediction] * 100
15
+
16
+ if probability < 50:
17
+ adjusted_probability = (probability / 50) * 100
18
+ else:
19
+ adjusted_probability = ((probability - 50) / 50) * 100
20
+
21
+ if prediction == 1:
22
+ result = f"The CKD status is most likely to progress into Severe (1). The probability is {adjusted_probability:.2f}%."
23
+ else:
24
+ result = f"The CKD status is most likely to progress into Non-Severe (0). The probability is {adjusted_probability:.2f}%."
25
+
26
+ return c3_c4_ratio, result
27
+
28
+ # Create the Gradio interface
29
+ inputs = [
30
+ gr.inputs.Number(label="Age (in years)"),
31
+ gr.inputs.Number(label="C3"),
32
+ gr.inputs.Number(label="C4")
33
+ ]
34
+
35
+ outputs = [
36
+ gr.outputs.Textbox(label="C3/C4 Ratio"),
37
+ gr.outputs.Textbox(label="Prediction")
38
+
39
+ ]
40
+
41
+ gr.Interface(fn=predict_ckd_severity, inputs=inputs, outputs=outputs, title="CKD Severity Prediction").launch()