Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the trained model
|
6 |
+
model_path = RDF_Model_Classify_Severity_CKD.s3a
|
7 |
+
model = joblib.load(model_path)
|
8 |
+
|
9 |
+
# Define the prediction function
|
10 |
+
def predict_ckd_severity(age, c3, c4):
|
11 |
+
c3_c4_ratio = c3 / c4
|
12 |
+
features = np.array([[age, c3, c4, c3_c4_ratio]])
|
13 |
+
prediction = model.predict(features)[0]
|
14 |
+
probability = model.predict_proba(features)[0][prediction] * 100
|
15 |
+
|
16 |
+
if probability < 50:
|
17 |
+
adjusted_probability = (probability / 50) * 100
|
18 |
+
else:
|
19 |
+
adjusted_probability = ((probability - 50) / 50) * 100
|
20 |
+
|
21 |
+
if prediction == 1:
|
22 |
+
result = f"The CKD status is most likely to progress into Severe (1). The probability is {adjusted_probability:.2f}%."
|
23 |
+
else:
|
24 |
+
result = f"The CKD status is most likely to progress into Non-Severe (0). The probability is {adjusted_probability:.2f}%."
|
25 |
+
|
26 |
+
return c3_c4_ratio, result
|
27 |
+
|
28 |
+
# Create the Gradio interface
|
29 |
+
inputs = [
|
30 |
+
gr.inputs.Number(label="Age (in years)"),
|
31 |
+
gr.inputs.Number(label="C3"),
|
32 |
+
gr.inputs.Number(label="C4")
|
33 |
+
]
|
34 |
+
|
35 |
+
outputs = [
|
36 |
+
gr.outputs.Textbox(label="C3/C4 Ratio"),
|
37 |
+
gr.outputs.Textbox(label="Prediction")
|
38 |
+
|
39 |
+
]
|
40 |
+
|
41 |
+
gr.Interface(fn=predict_ckd_severity, inputs=inputs, outputs=outputs, title="CKD Severity Prediction").launch()
|