Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
import zipfile
|
5 |
+
|
6 |
+
def process_csv(uploaded_file):
|
7 |
+
"""
|
8 |
+
Process the uploaded CSV file to:
|
9 |
+
1. Replace text-based columns and numerical columns with less than six unique options with coded values.
|
10 |
+
2. Fill missing values in numerical columns with their respective medians.
|
11 |
+
3. Return a zip file containing the modified CSV file, a legend CSV, and a CSV detailing data fill methods.
|
12 |
+
"""
|
13 |
+
# Load the data from the uploaded file's byte stream
|
14 |
+
data = pd.read_csv(uploaded_file.name)
|
15 |
+
|
16 |
+
# Dictionary to store column name and its mapping of original values to codes
|
17 |
+
legend_dict = {}
|
18 |
+
|
19 |
+
# List to store the details of columns where data was added
|
20 |
+
data_added_details = []
|
21 |
+
|
22 |
+
# Loop through each column in the DataFrame
|
23 |
+
for col in data.columns:
|
24 |
+
# Check if the column is of type object (text-based) or if it's numerical with less than six unique options
|
25 |
+
if data[col].dtype == 'object' or (data[col].nunique() < 6 and pd.api.types.is_numeric_dtype(data[col])):
|
26 |
+
# Create a mapping of original values to codes, including NaN or blank values mapped to -9999
|
27 |
+
mapping = {value: code if pd.notna(value) else -9999 for code, value in enumerate(data[col].unique())}
|
28 |
+
legend_dict[col] = mapping
|
29 |
+
# Replace the values in the column with their respective codes
|
30 |
+
data[col] = data[col].map(mapping)
|
31 |
+
elif pd.api.types.is_numeric_dtype(data[col]) and any(pd.isna(data[col])):
|
32 |
+
# Replace with median
|
33 |
+
median_value = data[col].median()
|
34 |
+
data[col].fillna(median_value, inplace=True)
|
35 |
+
data_added_details.append([col, "Median", median_value])
|
36 |
+
|
37 |
+
# Name of the zip file based on uploaded file name
|
38 |
+
zip_name = "processed_files.zip"
|
39 |
+
|
40 |
+
# Save CSV files and add them to the zip file
|
41 |
+
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
42 |
+
data.to_csv("modified_data.csv", index=False)
|
43 |
+
zipf.write("modified_data.csv")
|
44 |
+
|
45 |
+
legend_df = pd.DataFrame(list(legend_dict.items()), columns=['Column', 'Mapping'])
|
46 |
+
legend_df.to_csv("legend.csv", index=False)
|
47 |
+
zipf.write("legend.csv")
|
48 |
+
|
49 |
+
data_added_df = pd.DataFrame(data_added_details, columns=['Column', 'Method', 'Value Added'])
|
50 |
+
data_added_df.to_csv("data_added_details.csv", index=False)
|
51 |
+
zipf.write("data_added_details.csv")
|
52 |
+
|
53 |
+
return zip_name
|
54 |
+
|
55 |
+
# Gradio Interface
|
56 |
+
iface = gr.Interface(
|
57 |
+
fn=process_csv,
|
58 |
+
inputs=gr.inputs.File(type="file", label="Upload CSV File"),
|
59 |
+
outputs=gr.outputs.File(label="Download Processed Files"),
|
60 |
+
live=False
|
61 |
+
)
|
62 |
+
|
63 |
+
iface.launch()
|