Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from joblib import load
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the trained model
|
6 |
+
model = load("ML_Model_CallCorr.joblib")
|
7 |
+
|
8 |
+
def predict_corrected_calcium(total_calcium, total_protein, albumin):
|
9 |
+
# Calculate Albumin to Total Protein Ratio
|
10 |
+
atr = albumin / total_protein
|
11 |
+
|
12 |
+
# Predict the actual calcium value using the model
|
13 |
+
predicted_value = model.predict([[total_calcium, atr]])[0]
|
14 |
+
|
15 |
+
# Return the result string
|
16 |
+
return f"The Actual Calcium value with Correction is {predicted_value:.2f}. The model is a RDF Regression Model with a MSE of 0.06 and R-squared of 0.931."
|
17 |
+
|
18 |
+
# Define the Gradio interface
|
19 |
+
interface = gr.Interface(fn=predict_corrected_calcium,
|
20 |
+
inputs=[gr.inputs.Number(label="Total Calcium in mg/dL"),
|
21 |
+
gr.inputs.Number(label="Total Protein in g/dL"),
|
22 |
+
gr.inputs.Number(label="Albumin in g/dL")],
|
23 |
+
outputs=gr.outputs.Textbox())
|
24 |
+
|
25 |
+
interface.launch()
|