Docfile commited on
Commit
b2f106f
·
verified ·
1 Parent(s): 1efbc81

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import pandas as pd
4
+ from pycaret.regression import load_model, predict_model
5
+ from fastapi import FastAPI
6
+ import uvicorn
7
+ from pydantic import create_model
8
+
9
+ # Create the app
10
+ app = FastAPI()
11
+
12
+ # Load trained Pipeline
13
+ model = load_model("lr_api")
14
+
15
+ # Create input/output pydantic models
16
+ input_model = create_model("lr_api_input", **{'rownames': 1030, 'year': 1994, 'violent': 304.5, 'murder': 2.9000000953674316, 'prisoners': 152, 'afam': 1.769081950187683, 'cauc': 70.66014862060547, 'male': 18.20832061767578, 'population': 1.9304360151290894, 'income': 12036.8603515625, 'density': 0.023493800312280655, 'state': 'Utah', 'law': 'yes'})
17
+ output_model = create_model("lr_api_output", prediction=63.6)
18
+
19
+
20
+ # Define predict function
21
+ @app.post("/predict", response_model=output_model)
22
+ def predict(data: input_model):
23
+ data = pd.DataFrame([data.dict()])
24
+ predictions = predict_model(model, data=data)
25
+ return {"prediction": predictions["prediction_label"].iloc[0]}
26
+
27
+
28
+ #if __name__ == "__main__":
29
+ # uvicorn.run(app, host="127.0.0.1", port=8000)