File size: 9,555 Bytes
ca9f82a
f388c93
 
 
 
 
 
6b10944
12d4886
f388c93
 
12d4886
e7761b5
ca9f82a
 
 
f388c93
ca9f82a
 
 
8071ff2
ca9f82a
 
 
2ef19ee
ca9f82a
 
f388c93
ca9f82a
 
 
f388c93
 
949f8bc
451d8eb
ca9f82a
 
 
 
 
 
 
37c758b
 
ca9f82a
 
 
 
 
 
b88caed
ca9f82a
 
 
 
 
 
37c758b
ca9f82a
 
b88caed
ca9f82a
37c758b
 
ca9f82a
b88caed
ca9f82a
37c758b
b88caed
37c758b
 
 
 
 
 
 
 
b88caed
37c758b
 
 
 
 
 
b88caed
37c758b
 
 
 
 
 
 
 
 
 
 
ca9f82a
 
 
b88caed
ca9f82a
 
 
 
 
 
 
 
451d8eb
8071ff2
 
ca9f82a
e7761b5
2ef19ee
93f4a81
37c758b
2ef19ee
ca9f82a
 
8071ff2
ca9f82a
 
 
8071ff2
ca9f82a
 
 
 
 
 
 
37c758b
 
ca9f82a
 
 
b88caed
ca9f82a
 
 
 
 
 
37c758b
ca9f82a
 
b88caed
ca9f82a
37c758b
 
ca9f82a
b88caed
ca9f82a
37c758b
b88caed
37c758b
 
 
 
 
 
 
 
b88caed
37c758b
 
 
 
 
 
b88caed
37c758b
 
 
 
 
 
 
 
 
 
 
ca9f82a
 
 
b88caed
ca9f82a
 
 
 
 
 
 
 
 
8071ff2
ca9f82a
 
2ef19ee
f388c93
ca9f82a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from flask import Flask, render_template, request, jsonify, Response, stream_with_context
from google import genai
from google.genai import types
import os
from PIL import Image
import io
import base64
import json

app = Flask(__name__)

GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY")

client = genai.Client(
    api_key=GOOGLE_API_KEY,
)

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/free')
def indexx():
    return render_template('maj.html')

@app.route('/solve', methods=['POST'])
def solve():
    try:
        image_data = request.files['image'].read()
        img = Image.open(io.BytesIO(image_data))

        buffered = io.BytesIO()
        img.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode()

        def generate():
            mode = 'starting'
            try:
                response = client.models.generate_content_stream(
                    model="gemini-2.5-pro-exp-03-25",
                    contents=[
                        {'inline_data': {'mime_type': 'image/png', 'data': img_str}},
                        """Résous ce problème en français en utilisant des formules mathématiques LaTeX quand nécessaire. 
                        Présente ta réponse de manière claire et structurée."""
                    ],
                    config=types.GenerateContentConfig(
                        thinking_config=types.ThinkingConfig(
                            thinking_budget=8000
                        ),
                        tools=[types.Tool(
                            code_execution=types.ToolCodeExecution
                        )]
                    )
                )

                for chunk in response:
                    for part in chunk.candidates[0].content.parts:
                        # Gestion des modes (thinking/answering)
                        if hasattr(part, 'thought') and part.thought:
                            if mode != "thinking":
                                yield f'data: {json.dumps({"mode": "thinking"})}\n\n'
                                mode = "thinking"
                            yield f'data: {json.dumps({"content": part.thought})}\n\n'
                        elif part.text is not None:
                            if mode != "answering":
                                yield f'data: {json.dumps({"mode": "answering"})}\n\n'
                                mode = "answering"
                            yield f'data: {json.dumps({"content": part.text})}\n\n'
                        
                        # Gestion du code exécutable
                        elif hasattr(part, 'executable_code') and part.executable_code is not None:
                            if mode != "answering":
                                yield f'data: {json.dumps({"mode": "answering"})}\n\n'
                                mode = "answering"
                            # Formater le code pour l'affichage
                            code_content = f"```python\n{part.executable_code.code}\n```"
                            yield f'data: {json.dumps({"content": code_content})}\n\n'
                        
                        # Gestion des résultats de l'exécution du code
                        elif hasattr(part, 'code_execution_result') and part.code_execution_result is not None:
                            if mode != "answering":
                                yield f'data: {json.dumps({"mode": "answering"})}\n\n'
                                mode = "answering"
                            yield f'data: {json.dumps({"content": f"```\n{part.code_execution_result.output}\n```"})}\n\n'
                        
                        # Gestion des images inline
                        elif hasattr(part, 'inline_data') and part.inline_data is not None:
                            if mode != "answering":
                                yield f'data: {json.dumps({"mode": "answering"})}\n\n'
                                mode = "answering"
                            # Convertir l'image en base64 pour l'affichage HTML
                            image_data = part.inline_data.data
                            image_format = part.inline_data.mime_type.split('/')[-1]
                            image_src = f"data:{part.inline_data.mime_type};base64,{image_data}"
                            image_tag = f'<img src="{image_src}" alt="Generated Image" style="max-width:100%;">'
                            yield f'data: {json.dumps({"content": image_tag})}\n\n'

            except Exception as e:
                print(f"Error during generation: {e}")
                yield f'data: {json.dumps({"error": str(e)})}\n\n'

        return Response(
            stream_with_context(generate()),
            mimetype='text/event-stream',
            headers={
                'Cache-Control': 'no-cache',
                'X-Accel-Buffering': 'no'
            }
        )

    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/solved', methods=['POST'])
def solved():
    # Version similaire avec le modèle flash
    try:
        image_data = request.files['image'].read()
        img = Image.open(io.BytesIO(image_data))

        buffered = io.BytesIO()
        img.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode()

        def generate():
            mode = 'starting'
            try:
                response = client.models.generate_content_stream(
                    model="gemini-2.5-flash-preview-04-17",
                    contents=[
                        {'inline_data': {'mime_type': 'image/png', 'data': img_str}},
                        """Résous ce problème en français en utilisant des formules mathématiques LaTeX quand nécessaire.
                        Présente ta réponse de manière claire et structurée."""
                    ],
                    config=types.GenerateContentConfig(
                        tools=[types.Tool(
                            code_execution=types.ToolCodeExecution
                        )]
                    )
                )

                for chunk in response:
                    for part in chunk.candidates[0].content.parts:
                        # Gestion des modes (thinking/answering)
                        if hasattr(part, 'thought') and part.thought:
                            if mode != "thinking":
                                yield f'data: {json.dumps({"mode": "thinking"})}\n\n'
                                mode = "thinking"
                            yield f'data: {json.dumps({"content": part.thought})}\n\n'
                        elif part.text is not None:
                            if mode != "answering":
                                yield f'data: {json.dumps({"mode": "answering"})}\n\n'
                                mode = "answering"
                            yield f'data: {json.dumps({"content": part.text})}\n\n'
                        
                        # Gestion du code exécutable
                        elif hasattr(part, 'executable_code') and part.executable_code is not None:
                            if mode != "answering":
                                yield f'data: {json.dumps({"mode": "answering"})}\n\n'
                                mode = "answering"
                            # Formater le code pour l'affichage
                            code_content = f"```python\n{part.executable_code.code}\n```"
                            yield f'data: {json.dumps({"content": code_content})}\n\n'
                        
                        # Gestion des résultats de l'exécution du code
                        elif hasattr(part, 'code_execution_result') and part.code_execution_result is not None:
                            if mode != "answering":
                                yield f'data: {json.dumps({"mode": "answering"})}\n\n'
                                mode = "answering"
                            yield f'data: {json.dumps({"content": f"```\n{part.code_execution_result.output}\n```"})}\n\n'
                        
                        # Gestion des images inline
                        elif hasattr(part, 'inline_data') and part.inline_data is not None:
                            if mode != "answering":
                                yield f'data: {json.dumps({"mode": "answering"})}\n\n'
                                mode = "answering"
                            # Convertir l'image en base64 pour l'affichage HTML
                            image_data = part.inline_data.data
                            image_format = part.inline_data.mime_type.split('/')[-1]
                            image_src = f"data:{part.inline_data.mime_type};base64,{image_data}"
                            image_tag = f'<img src="{image_src}" alt="Generated Image" style="max-width:100%;">'
                            yield f'data: {json.dumps({"content": image_tag})}\n\n'

            except Exception as e:
                print(f"Error during generation: {e}")
                yield f'data: {json.dumps({"error": str(e)})}\n\n'

        return Response(
            stream_with_context(generate()),
            mimetype='text/event-stream',
            headers={
                'Cache-Control': 'no-cache',
                'X-Accel-Buffering': 'no'
            }
        )

    except Exception as e:
        return jsonify({'error': str(e)}), 500

if __name__ == '__main__':
    app.run(debug=True)