Spaces:
Running
Running
File size: 9,555 Bytes
ca9f82a f388c93 6b10944 12d4886 f388c93 12d4886 e7761b5 ca9f82a f388c93 ca9f82a 8071ff2 ca9f82a 2ef19ee ca9f82a f388c93 ca9f82a f388c93 949f8bc 451d8eb ca9f82a 37c758b ca9f82a b88caed ca9f82a 37c758b ca9f82a b88caed ca9f82a 37c758b ca9f82a b88caed ca9f82a 37c758b b88caed 37c758b b88caed 37c758b b88caed 37c758b ca9f82a b88caed ca9f82a 451d8eb 8071ff2 ca9f82a e7761b5 2ef19ee 93f4a81 37c758b 2ef19ee ca9f82a 8071ff2 ca9f82a 8071ff2 ca9f82a 37c758b ca9f82a b88caed ca9f82a 37c758b ca9f82a b88caed ca9f82a 37c758b ca9f82a b88caed ca9f82a 37c758b b88caed 37c758b b88caed 37c758b b88caed 37c758b ca9f82a b88caed ca9f82a 8071ff2 ca9f82a 2ef19ee f388c93 ca9f82a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
from flask import Flask, render_template, request, jsonify, Response, stream_with_context
from google import genai
from google.genai import types
import os
from PIL import Image
import io
import base64
import json
app = Flask(__name__)
GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY")
client = genai.Client(
api_key=GOOGLE_API_KEY,
)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/free')
def indexx():
return render_template('maj.html')
@app.route('/solve', methods=['POST'])
def solve():
try:
image_data = request.files['image'].read()
img = Image.open(io.BytesIO(image_data))
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
def generate():
mode = 'starting'
try:
response = client.models.generate_content_stream(
model="gemini-2.5-pro-exp-03-25",
contents=[
{'inline_data': {'mime_type': 'image/png', 'data': img_str}},
"""Résous ce problème en français en utilisant des formules mathématiques LaTeX quand nécessaire.
Présente ta réponse de manière claire et structurée."""
],
config=types.GenerateContentConfig(
thinking_config=types.ThinkingConfig(
thinking_budget=8000
),
tools=[types.Tool(
code_execution=types.ToolCodeExecution
)]
)
)
for chunk in response:
for part in chunk.candidates[0].content.parts:
# Gestion des modes (thinking/answering)
if hasattr(part, 'thought') and part.thought:
if mode != "thinking":
yield f'data: {json.dumps({"mode": "thinking"})}\n\n'
mode = "thinking"
yield f'data: {json.dumps({"content": part.thought})}\n\n'
elif part.text is not None:
if mode != "answering":
yield f'data: {json.dumps({"mode": "answering"})}\n\n'
mode = "answering"
yield f'data: {json.dumps({"content": part.text})}\n\n'
# Gestion du code exécutable
elif hasattr(part, 'executable_code') and part.executable_code is not None:
if mode != "answering":
yield f'data: {json.dumps({"mode": "answering"})}\n\n'
mode = "answering"
# Formater le code pour l'affichage
code_content = f"```python\n{part.executable_code.code}\n```"
yield f'data: {json.dumps({"content": code_content})}\n\n'
# Gestion des résultats de l'exécution du code
elif hasattr(part, 'code_execution_result') and part.code_execution_result is not None:
if mode != "answering":
yield f'data: {json.dumps({"mode": "answering"})}\n\n'
mode = "answering"
yield f'data: {json.dumps({"content": f"```\n{part.code_execution_result.output}\n```"})}\n\n'
# Gestion des images inline
elif hasattr(part, 'inline_data') and part.inline_data is not None:
if mode != "answering":
yield f'data: {json.dumps({"mode": "answering"})}\n\n'
mode = "answering"
# Convertir l'image en base64 pour l'affichage HTML
image_data = part.inline_data.data
image_format = part.inline_data.mime_type.split('/')[-1]
image_src = f"data:{part.inline_data.mime_type};base64,{image_data}"
image_tag = f'<img src="{image_src}" alt="Generated Image" style="max-width:100%;">'
yield f'data: {json.dumps({"content": image_tag})}\n\n'
except Exception as e:
print(f"Error during generation: {e}")
yield f'data: {json.dumps({"error": str(e)})}\n\n'
return Response(
stream_with_context(generate()),
mimetype='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'X-Accel-Buffering': 'no'
}
)
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/solved', methods=['POST'])
def solved():
# Version similaire avec le modèle flash
try:
image_data = request.files['image'].read()
img = Image.open(io.BytesIO(image_data))
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
def generate():
mode = 'starting'
try:
response = client.models.generate_content_stream(
model="gemini-2.5-flash-preview-04-17",
contents=[
{'inline_data': {'mime_type': 'image/png', 'data': img_str}},
"""Résous ce problème en français en utilisant des formules mathématiques LaTeX quand nécessaire.
Présente ta réponse de manière claire et structurée."""
],
config=types.GenerateContentConfig(
tools=[types.Tool(
code_execution=types.ToolCodeExecution
)]
)
)
for chunk in response:
for part in chunk.candidates[0].content.parts:
# Gestion des modes (thinking/answering)
if hasattr(part, 'thought') and part.thought:
if mode != "thinking":
yield f'data: {json.dumps({"mode": "thinking"})}\n\n'
mode = "thinking"
yield f'data: {json.dumps({"content": part.thought})}\n\n'
elif part.text is not None:
if mode != "answering":
yield f'data: {json.dumps({"mode": "answering"})}\n\n'
mode = "answering"
yield f'data: {json.dumps({"content": part.text})}\n\n'
# Gestion du code exécutable
elif hasattr(part, 'executable_code') and part.executable_code is not None:
if mode != "answering":
yield f'data: {json.dumps({"mode": "answering"})}\n\n'
mode = "answering"
# Formater le code pour l'affichage
code_content = f"```python\n{part.executable_code.code}\n```"
yield f'data: {json.dumps({"content": code_content})}\n\n'
# Gestion des résultats de l'exécution du code
elif hasattr(part, 'code_execution_result') and part.code_execution_result is not None:
if mode != "answering":
yield f'data: {json.dumps({"mode": "answering"})}\n\n'
mode = "answering"
yield f'data: {json.dumps({"content": f"```\n{part.code_execution_result.output}\n```"})}\n\n'
# Gestion des images inline
elif hasattr(part, 'inline_data') and part.inline_data is not None:
if mode != "answering":
yield f'data: {json.dumps({"mode": "answering"})}\n\n'
mode = "answering"
# Convertir l'image en base64 pour l'affichage HTML
image_data = part.inline_data.data
image_format = part.inline_data.mime_type.split('/')[-1]
image_src = f"data:{part.inline_data.mime_type};base64,{image_data}"
image_tag = f'<img src="{image_src}" alt="Generated Image" style="max-width:100%;">'
yield f'data: {json.dumps({"content": image_tag})}\n\n'
except Exception as e:
print(f"Error during generation: {e}")
yield f'data: {json.dumps({"error": str(e)})}\n\n'
return Response(
stream_with_context(generate()),
mimetype='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'X-Accel-Buffering': 'no'
}
)
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(debug=True) |