Spaces:
Running
Running
# --- START OF CORRECTED_AGAIN app.py --- | |
from flask import Flask, render_template, request, jsonify, Response, stream_with_context | |
# Utilisation de l'import et de l'initialisation de votre code original | |
from google import genai | |
from google.genai import types | |
# Import des exceptions potentielles si elles sont dans google.api_core | |
# from google.api_core import exceptions as api_exceptions | |
import os | |
from PIL import Image | |
import io | |
import base64 | |
import json | |
import traceback # Import traceback pour un meilleur log des erreurs | |
app = Flask(__name__) | |
GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY") | |
# Utilisation de l'initialisation de votre code original | |
client = genai.Client( | |
api_key=GOOGLE_API_KEY, | |
) | |
# Ensure API key is available (good practice) | |
if not GOOGLE_API_KEY: | |
print("WARNING: GEMINI_API_KEY environment variable not set. API calls will likely fail.") | |
# Consider adding a check before allowing API calls if the key is missing | |
# --- Routes for index and potentially the Pro version (kept for context) --- | |
def index(): | |
# Assuming index.html is for the Pro version or another page | |
return render_template('index.html') # Or redirect to /free if it's the main page | |
def indexx(): | |
# This route serves the free version HTML | |
return render_template('maj.html') | |
# --- Original /solve route (Pro version, streaming) - Kept as is --- | |
def solve(): | |
try: | |
if 'image' not in request.files or not request.files['image'].filename: | |
return jsonify({'error': 'No image file provided'}), 400 | |
image_data = request.files['image'].read() | |
if not image_data: | |
return jsonify({'error': 'Empty image file provided'}), 400 | |
try: | |
img = Image.open(io.BytesIO(image_data)) | |
except Exception as img_err: | |
return jsonify({'error': f'Invalid image file: {str(img_err)}'}), 400 | |
buffered = io.BytesIO() | |
img.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() # Keep base64 for this route | |
def generate(): | |
mode = 'starting' | |
try: | |
response = client.models.generate_content_stream( | |
model="gemini-2.5-pro-exp-03-25", # Your original model name | |
contents=[ | |
{'inline_data': {'mime_type': 'image/png', 'data': img_str}}, | |
"""Résous cet exercice en français avec du LaTeX. | |
Si nécessaire, utilise du code Python pour effectuer les calculs complexes. | |
Présente ta solution de façon claire et espacée.""" | |
], | |
config=types.GenerateContentConfig( | |
thinking_config=types.ThinkingConfig( | |
thinking_budget=8000 | |
), | |
tools=[types.Tool( | |
code_execution=types.ToolCodeExecution() | |
)] | |
) | |
) | |
for chunk in response: | |
# Process chunks as in your original streaming logic | |
if chunk.candidates and chunk.candidates[0].content and chunk.candidates[0].content.parts: | |
for part in chunk.candidates[0].content.parts: | |
if hasattr(part, 'thought') and part.thought: | |
if mode != "thinking": | |
yield 'data: ' + json.dumps({"mode": "thinking"}) + '\n\n' | |
mode = "thinking" | |
elif hasattr(part, 'executable_code') and part.executable_code: | |
if mode != "executing_code": | |
yield 'data: ' + json.dumps({"mode": "executing_code"}) + '\n\n' | |
mode = "executing_code" | |
code_block_open = "```python\n" | |
code_block_close = "\n```" | |
yield 'data: ' + json.dumps({"content": code_block_open + part.executable_code.code + code_block_close}) + '\n\n' | |
elif hasattr(part, 'code_execution_result') and part.code_execution_result: | |
if mode != "code_result": | |
yield 'data: ' + json.dumps({"mode": "code_result"}) + '\n\n' | |
mode = "code_result" | |
result_block_open = "Résultat d'exécution:\n```\n" | |
result_block_close = "\n```" | |
yield 'data: ' + json.dumps({"content": result_block_open + part.code_execution_result.output + result_block_close}) + '\n\n' | |
else: # Assuming it's text | |
if mode != "answering": | |
yield 'data: ' + json.dumps({"mode": "answering"}) + '\n\n' | |
mode = "answering" | |
if hasattr(part, 'text') and part.text: | |
yield 'data: ' + json.dumps({"content": part.text}) + '\n\n' | |
# Handle prompt feedback or finish reasons in streaming | |
elif chunk.prompt_feedback and chunk.prompt_feedback.block_reason: | |
error_msg = f"Prompt blocked: {chunk.prompt_feedback.block_reason.name}" | |
print(error_msg) | |
yield 'data: ' + json.dumps({"error": error_msg}) + '\n\n' | |
break # Stop processing on block | |
elif chunk.candidates and chunk.candidates[0].finish_reason: | |
finish_reason = chunk.candidates[0].finish_reason.name | |
if finish_reason != 'STOP': | |
error_msg = f"Generation finished early: {finish_reason}" | |
print(error_msg) | |
yield 'data: ' + json.dumps({"error": error_msg}) + '\n\n' | |
break # Stop processing on finish reason | |
except Exception as e: | |
print(f"Error during streaming generation: {e}") | |
yield 'data: ' + json.dumps({"error": str(e)}) + '\n\n' | |
return Response( | |
stream_with_context(generate()), | |
mimetype='text/event-stream', | |
headers={ | |
'Cache-Control': 'no-cache', | |
'X-Accel-Buffering': 'no' | |
} | |
) | |
except Exception as e: | |
# Log the full error for debugging | |
print(f"Error in /solve endpoint (setup or initial request): {e}") | |
print(traceback.format_exc()) | |
# Return JSON error for fetch API if streaming setup fails | |
return jsonify({'error': f'Failed to process request: {str(e)}'}), 500 | |
# --- MODIFIED /solved route (Free version, non-streaming) - Corrected Exception Handling --- | |
def solved(): | |
try: | |
if 'image' not in request.files or not request.files['image'].filename: | |
return jsonify({'error': 'No image file provided'}), 400 | |
image_data = request.files['image'].read() | |
if not image_data: | |
return jsonify({'error': 'Empty image file provided'}), 400 | |
try: | |
img = Image.open(io.BytesIO(image_data)) | |
except Exception as img_err: | |
return jsonify({'error': f'Invalid image file: {str(img_err)}'}), 400 | |
buffered = io.BytesIO() # Keep BytesIO | |
img.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() # Keep base64 | |
# Use the non-streaming generate_content method | |
model_name = "gemini-2.5-flash-preview-04-17" # Your original free model name | |
contents = [ | |
{'inline_data': {'mime_type': 'image/png', 'data': img_str}}, # Use inline_data with base64 | |
"""Résous cet exercice en français en utilisant le format LaTeX pour les mathématiques si nécessaire. | |
Si tu dois effectuer des calculs complexes, utilise l'outil d'exécution de code Python fourni. | |
Présente ta solution de manière claire et bien structurée. Formate le code Python dans des blocs délimités par ```python ... ``` et les résultats d'exécution dans des blocs ``` ... ```.""" | |
] | |
# Call the non-streaming generation method using the original client object | |
response = client.models.generate_content( | |
model=model_name, | |
contents=contents, | |
config=types.GenerateContentConfig( | |
tools=[types.Tool( | |
code_execution=types.ToolCodeExecution() | |
)] | |
) | |
# Note: No stream=True here for non-streaming | |
) | |
# Aggregate the response parts into a single string | |
full_solution = "" | |
# Check if the response has candidates and parts | |
if response.candidates and response.candidates[0].content and response.candidates[0].content.parts: | |
for part in response.candidates[0].content.parts: | |
if hasattr(part, 'text') and part.text: | |
full_solution += part.text | |
elif hasattr(part, 'executable_code') and part.executable_code: | |
full_solution += f"\n\n```python\n{part.executable_code.code}\n```\n\n" | |
# Check for the result attribute name - reverting to your original structure if possible | |
# Based on your original code, code_execution_result seemed to be the attribute | |
elif hasattr(part, 'code_execution_result') and hasattr(part.code_execution_result, 'output'): | |
output_str = part.code_execution_result.output | |
full_solution += f"\n\n**Résultat d'exécution:**\n```\n{output_str}\n```\n\n" | |
# Note: 'thought' parts are ignored | |
# Handle cases where the response is empty or blocked | |
if not full_solution.strip(): | |
# Check for prompt feedback blocking or finish reasons | |
if response.prompt_feedback and response.prompt_feedback.block_reason: | |
block_reason = response.prompt_feedback.block_reason.name | |
full_solution = f"Le contenu a été bloqué pour des raisons de sécurité: {block_reason}." | |
print(f"Generation blocked by prompt feedback: {block_reason}") # Log it | |
elif response.candidates and response.candidates[0].finish_reason: | |
finish_reason = response.candidates[0].finish_reason.name | |
# Provide specific messages for known non-STOP finish reasons | |
if finish_reason == 'SAFETY': | |
full_solution = "Désolé, je ne peux pas fournir de réponse en raison de restrictions de sécurité." | |
elif finish_reason == 'RECITATION': | |
full_solution = "Désolé, la réponse ne peut être fournie en raison de la politique sur les récitations." | |
else: | |
# Generic message for other finish reasons (e.g., MAX_TOKENS) | |
full_solution = f"La génération s'est terminée prématurément ({finish_reason}). Le problème est peut-être trop complexe ou nécessite plus de tokens." | |
print(f"Generation finished early: {finish_reason}") # Log it | |
else: | |
# Fallback if no specific reason is found but the response is empty | |
full_solution = "Désolé, je n'ai pas pu générer de solution pour cette image." | |
print("Generation resulted in empty content without specific block/finish reason.") | |
# Return the complete solution as JSON | |
return jsonify({'solution': full_solution.strip()}) | |
# --- Corrected Exception Handling --- | |
# Catching a more general Google API error if available, otherwise just Exception | |
# The specific exception name might depend on the exact SDK version. | |
# We'll try a common one first. If this still gives AttributeError, | |
# we'll rely on the generic Exception catch below. | |
try: | |
# Attempt to import the specific exception type dynamically | |
# This is safer than assuming its location | |
from google.api_core.exceptions import GoogleAPIError | |
# If the import succeeds, catch that specific error | |
except GoogleAPIError as api_error: | |
print(f"Google API Error caught: {api_error}") | |
# Provide error details to the client, avoiding revealing full traceback | |
error_message = "Une erreur est survenue lors de la communication avec l'API GenAI." | |
# Attempt to extract a more specific message if possible from the error object | |
if hasattr(api_error, 'message'): | |
error_message = f"Erreur API: {api_error.message}" | |
elif hasattr(api_error, 'details'): | |
error_message = f"Erreur API: {api_error.details}" | |
else: | |
error_message = f"Erreur API: {str(api_error)}" # Fallback to string representation | |
# Check for common error phrases to provide user-friendly messages | |
if "blocked" in str(api_error).lower() or "safety" in str(api_error).lower(): | |
error_message = 'Le contenu a été bloqué par l\'API pour des raisons de sécurité.' | |
return jsonify({'error': error_message}), 400 # Use 400 for client-side issue (the prompt) | |
return jsonify({'error': error_message}), 500 # Use 500 for server-side API issues | |
except ImportError: | |
# If GoogleAPIError is not found in api_core, we'll fall through to the generic Exception catch | |
print("Could not import google.api_core.exceptions.GoogleAPIError. Using generic exception handling.") | |
pass # Continue to the next except block | |
except Exception as e: | |
# Catch any other unexpected errors during processing or API call | |
print(f"An unexpected error occurred in /solved endpoint: {e}") | |
# Log the full traceback for server-side debugging | |
print(traceback.format_exc()) | |
# Provide a generic error message to the user | |
return jsonify({'error': f'Une erreur interne est survenue: {str(e)}'}), 500 | |
if __name__ == '__main__': | |
# Set host='0.0.0.0' to make it accessible on your network if needed | |
# Remove debug=True in production | |
app.run(debug=True, host='0.0.0.0', port=5000) # Example port | |
# --- END OF CORRECTED_AGAIN app.py --- |