Spaces:
Running
Running
# --- START OF CORRECTED app.py --- | |
from flask import Flask, render_template, request, jsonify, Response, stream_with_context | |
# Revert to the original google.genai import and usage | |
from google import genai | |
# Make sure types is imported from google.genai if needed for specific model config | |
from google.genai import types | |
import os | |
from PIL import Image | |
import io | |
import base64 | |
import json | |
import re # Import regex if needed for advanced text processing (though less likely without streaming logic parsing) | |
app = Flask(__name__) | |
GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY") | |
# Use the original client initialization | |
client = genai.Client( | |
api_key=GOOGLE_API_KEY, | |
) | |
# Ensure API key is available (good practice) | |
if not GOOGLE_API_KEY: | |
print("WARNING: GEMINI_API_KEY environment variable not set.") | |
# Handle this case appropriately, e.g., exit or show an error on the page | |
# --- Routes for index and potentially the Pro version (kept for context) --- | |
def index(): | |
# Assuming index.html is for the Pro version or another page | |
return render_template('index.html') # Or redirect to /free if it's the main page | |
def indexx(): | |
# This route serves the free version HTML | |
return render_template('maj.html') | |
# --- Original /solve route (Pro version, streaming) - Kept for reference --- | |
# If you want the Pro version (/solve) to also be non-streaming, apply similar changes as below | |
def solve(): | |
try: | |
if 'image' not in request.files or not request.files['image'].filename: | |
return jsonify({'error': 'No image file provided'}), 400 | |
image_data = request.files['image'].read() | |
if not image_data: | |
return jsonify({'error': 'Empty image file provided'}), 400 | |
try: | |
img = Image.open(io.BytesIO(image_data)) | |
except Exception as img_err: | |
return jsonify({'error': f'Invalid image file: {str(img_err)}'}), 400 | |
buffered = io.BytesIO() | |
img.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() # Keep base64 for this route as in original | |
def generate(): | |
mode = 'starting' | |
try: | |
response = client.models.generate_content_stream( | |
# Use the model name for the Pro version as in your original code | |
model="gemini-2.5-pro-exp-03-25", # Your original model name | |
contents=[ | |
# Pass image as inline_data with base64 as in your original code | |
{'inline_data': {'mime_type': 'image/png', 'data': img_str}}, | |
"""Résous cet exercice en français avec du LaTeX. | |
Si nécessaire, utilise du code Python pour effectuer les calculs complexes. | |
Présente ta solution de façon claire et espacée.""" | |
], | |
config=types.GenerateContentConfig( | |
thinking_config=types.ThinkingConfig( | |
thinking_budget=8000 | |
), | |
tools=[types.Tool( | |
code_execution=types.ToolCodeExecution() | |
)] | |
) | |
) | |
# Process the streaming response as you had it | |
for chunk in response: | |
if chunk.candidates and chunk.candidates[0].content and chunk.candidates[0].content.parts: | |
for part in chunk.candidates[0].content.parts: | |
# Keep your original logic for emitting different modes in the stream | |
if hasattr(part, 'thought') and part.thought: | |
if mode != "thinking": | |
yield 'data: ' + json.dumps({"mode": "thinking"}) + '\n\n' | |
mode = "thinking" | |
elif hasattr(part, 'executable_code') and part.executable_code: | |
if mode != "executing_code": | |
yield 'data: ' + json.dumps({"mode": "executing_code"}) + '\n\n' | |
mode = "executing_code" | |
code_block_open = "```python\n" | |
code_block_close = "\n```" | |
yield 'data: ' + json.dumps({"content": code_block_open + part.executable_code.code + code_block_close}) + '\n\n' | |
elif hasattr(part, 'code_execution_result') and part.code_execution_result: | |
if mode != "code_result": | |
yield 'data: ' + json.dumps({"mode": "code_result"}) + '\n\n' | |
mode = "code_result" | |
result_block_open = "Résultat d'exécution:\n```\n" | |
result_block_close = "\n```" | |
yield 'data: ' + json.dumps({"content": result_block_open + part.code_execution_result.output + result_block_close}) + '\n\n' | |
else: # Assuming it's text | |
if mode != "answering": | |
yield 'data: ' + json.dumps({"mode": "answering"}) + '\n\n' | |
mode = "answering" | |
if hasattr(part, 'text') and part.text: | |
yield 'data: ' + json.dumps({"content": part.text}) + '\n\n' | |
# Handle cases where a chunk might not have candidates/parts immediately, or handle errors | |
elif chunk.prompt_feedback and chunk.prompt_feedback.block_reason: | |
error_msg = f"Prompt blocked: {chunk.prompt_feedback.block_reason.name}" | |
print(error_msg) | |
yield 'data: ' + json.dumps({"error": error_msg}) + '\n\n' | |
break # Stop processing on block | |
elif chunk.candidates and chunk.candidates[0].finish_reason: | |
finish_reason = chunk.candidates[0].finish_reason.name | |
if finish_reason != 'STOP': | |
error_msg = f"Generation finished early: {finish_reason}" | |
print(error_msg) | |
yield 'data: ' + json.dumps({"error": error_msg}) + '\n\n' | |
break # Stop processing on finish reason | |
except Exception as e: | |
print(f"Error during streaming generation: {e}") | |
yield 'data: ' + json.dumps({"error": str(e)}) + '\n\n' | |
return Response( | |
stream_with_context(generate()), | |
mimetype='text/event-stream', | |
headers={ | |
'Cache-Control': 'no-cache', | |
'X-Accel-Buffering': 'no' | |
} | |
) | |
except Exception as e: | |
print(f"Error in /solve endpoint: {e}") | |
# Return JSON error for fetch API if streaming setup fails | |
return jsonify({'error': f'Failed to process request: {str(e)}'}), 500 | |
# --- MODIFIED /solved route (Free version, non-streaming) using original SDK syntax --- | |
def solved(): | |
try: | |
if 'image' not in request.files or not request.files['image'].filename: | |
return jsonify({'error': 'No image file provided'}), 400 | |
image_data = request.files['image'].read() | |
if not image_data: | |
return jsonify({'error': 'Empty image file provided'}), 400 | |
try: | |
img = Image.open(io.BytesIO(image_data)) | |
except Exception as img_err: | |
return jsonify({'error': f'Invalid image file: {str(img_err)}'}), 400 | |
buffered = io.BytesBytesIO() | |
img.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
# Use the non-streaming generate_content method | |
# Use the model name for the Free version as in your original code | |
model_name = "gemini-2.5-flash-preview-04-17" # Your original free model name | |
# Prepare the content using inline_data with base64 string as in your original code | |
contents = [ | |
{'inline_data': {'mime_type': 'image/png', 'data': img_str}}, | |
"""Résous cet exercice en français en utilisant le format LaTeX pour les mathématiques si nécessaire. | |
Si tu dois effectuer des calculs complexes, utilise l'outil d'exécution de code Python fourni. | |
Présente ta solution de manière claire et bien structurée. Formate le code Python dans des blocs délimités par ```python ... ``` et les résultats d'exécution dans des blocs ``` ... ```.""" | |
] | |
# Call the non-streaming generation method using the original client object | |
response = client.models.generate_content( | |
model=model_name, | |
contents=contents, | |
config=types.GenerateContentConfig( | |
# Removed thinking_config as it's not relevant for non-streaming output | |
tools=[types.Tool( | |
code_execution=types.ToolCodeExecution() | |
)] | |
) | |
# Note: No stream=True here for non-streaming | |
) | |
# Aggregate the response parts into a single string | |
full_solution = "" | |
# Check if the response has candidates and parts | |
if response.candidates and response.candidates[0].content and response.candidates[0].content.parts: | |
for part in response.candidates[0].content.parts: | |
# Process parts based on attribute existence | |
if hasattr(part, 'text') and part.text: | |
full_solution += part.text | |
elif hasattr(part, 'executable_code') and part.executable_code: | |
# Format code block using Markdown, as the frontend expects this | |
full_solution += f"\n\n```python\n{part.executable_code.code}\n```\n\n" | |
# Check for the result attribute name based on your SDK version's structure | |
# It might be `code_execution_result` as in your original code, or nested | |
elif hasattr(part, 'code_execution_result') and hasattr(part.code_execution_result, 'output'): | |
# Format execution result block using Markdown | |
output_str = part.code_execution_result.output | |
full_solution += f"\n\n**Résultat d'exécution:**\n```\n{output_str}\n```\n\n" | |
# Add other potential part types if necessary (e.g., function_call, etc.) | |
# Note: 'thought' parts are ignored as requested | |
# Ensure we have some content, otherwise return a message | |
if not full_solution.strip(): | |
# Check for finish reasons or safety ratings | |
finish_reason = response.candidates[0].finish_reason.name if response.candidates and response.candidates[0].finish_reason else "UNKNOWN" | |
safety_ratings = response.candidates[0].safety_ratings if response.candidates else [] | |
print(f"Generation finished with reason: {finish_reason}, Safety: {safety_ratings}") # Log details | |
if finish_reason == 'SAFETY': | |
full_solution = "Désolé, je ne peux pas fournir de réponse en raison de restrictions de sécurité." | |
elif finish_reason == 'RECITATION': | |
full_solution = "Désolé, la réponse ne peut être fournie en raison de la politique sur les récitations." | |
# Also check prompt feedback for blocking reasons | |
elif response.prompt_feedback and response.prompt_feedback.block_reason: | |
block_reason = response.prompt_feedback.block_reason.name | |
full_solution = f"Le contenu a été bloqué pour des raisons de sécurité: {block_reason}." | |
else: | |
full_solution = "Désolé, je n'ai pas pu générer de solution complète pour cette image." | |
# Return the complete solution as JSON | |
# Use strip() to remove leading/trailing whitespace from the full solution | |
return jsonify({'solution': full_solution.strip()}) | |
# Catch specific API errors from your original SDK | |
except genai.core.exceptions.GoogleAPIError as api_error: | |
print(f"GenAI API Error: {api_error}") | |
# Check if the error response has details, like safety block | |
error_detail = str(api_error) | |
if "safety" in error_detail.lower(): | |
return jsonify({'error': 'Le contenu a été bloqué pour des raisons de sécurité par l\'API.'}), 400 | |
elif "blocked" in error_detail.lower(): | |
return jsonify({'error': 'La requête a été bloquée par l\'API.'}), 400 | |
else: | |
return jsonify({'error': f'Erreur de l\'API GenAI: {error_detail}'}), 500 | |
except Exception as e: | |
# Log the full error for debugging | |
import traceback | |
print(f"Error in /solved endpoint: {e}") | |
print(traceback.format_exc()) | |
# Provide a generic error message to the user | |
return jsonify({'error': f'Une erreur interne est survenue lors du traitement: {str(e)}'}), 500 | |
if __name__ == '__main__': | |
# Set host='0.0.0.0' to make it accessible on your network if needed | |
# Remove debug=True in production | |
app.run(debug=True, host='0.0.0.0', port=5000) # Example port | |
# --- END OF CORRECTED app.py --- |