from flask import Flask, render_template, request, jsonify, Response, stream_with_context from google import genai from google.genai import types import os from PIL import Image import io import base64 import json app = Flask(__name__) GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY") client = genai.Client( api_key=GOOGLE_API_KEY, ) @app.route('/') def index(): return render_template('index.html') @app.route('/free') def indexx(): return render_template('maj.html') @app.route('/solve', methods=['POST']) def solve(): try: image_data = request.files['image'].read() img = Image.open(io.BytesIO(image_data)) buffered = io.BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() def generate(): mode = 'starting' try: response = client.models.generate_content_stream( model="gemini-2.5-pro-exp-03-25", contents=[ {'inline_data': {'mime_type': 'image/png', 'data': img_str}}, """Résous cet exercice en français avec du LaTeX. Si nécessaire, utilise du code Python pour effectuer les calculs complexes. Présente ta solution de façon claire et espacée.""" ], config=types.GenerateContentConfig( thinking_config=types.ThinkingConfig( thinking_budget=8000 ), tools=[types.Tool( code_execution=types.ToolCodeExecution() )] ) ) for chunk in response: for part in chunk.candidates[0].content.parts: if hasattr(part, 'thought') and part.thought: if mode != "thinking": yield 'data: ' + json.dumps({"mode": "thinking"}) + '\n\n' mode = "thinking" elif hasattr(part, 'executable_code') and part.executable_code: if mode != "executing_code": yield 'data: ' + json.dumps({"mode": "executing_code"}) + '\n\n' mode = "executing_code" code_block_open = "```python\n" code_block_close = "\n```" yield 'data: ' + json.dumps({"content": code_block_open + part.executable_code.code + code_block_close}) + '\n\n' elif hasattr(part, 'code_execution_result') and part.code_execution_result: if mode != "code_result": yield 'data: ' + json.dumps({"mode": "code_result"}) + '\n\n' mode = "code_result" result_block_open = "Résultat d'exécution:\n```\n" result_block_close = "\n```" yield 'data: ' + json.dumps({"content": result_block_open + part.code_execution_result.output + result_block_close}) + '\n\n' else: if mode != "answering": yield 'data: ' + json.dumps({"mode": "answering"}) + '\n\n' mode = "answering" if hasattr(part, 'text') and part.text: yield 'data: ' + json.dumps({"content": part.text}) + '\n\n' except Exception as e: print(f"Error during generation: {e}") yield 'data: ' + json.dumps({"error": str(e)}) + '\n\n' return Response( stream_with_context(generate()), mimetype='text/event-stream', headers={ 'Cache-Control': 'no-cache', 'X-Accel-Buffering': 'no' } ) except Exception as e: return jsonify({'error': str(e)}), 500 @app.route('/solved', methods=['POST']) def solved(): try: image_data = request.files['image'].read() img = Image.open(io.BytesIO(image_data)) buffered = io.BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() def generate(): mode = 'starting' try: response = client.models.generate_content_stream( model="gemini-2.5-flash-preview-04-17", contents=[ {'inline_data': {'mime_type': 'image/png', 'data': img_str}}, """Résous cet exercice en français avec du LaTeX. Si nécessaire, utilise du code Python pour effectuer les calculs complexes. Présente ta solution de façon claire et espacée.""" ], config=types.GenerateContentConfig( tools=[types.Tool( code_execution=types.ToolCodeExecution() )] ) ) for chunk in response: for part in chunk.candidates[0].content.parts: if hasattr(part, 'thought') and part.thought: if mode != "thinking": yield 'data: ' + json.dumps({"mode": "thinking"}) + '\n\n' mode = "thinking" elif hasattr(part, 'executable_code') and part.executable_code: if mode != "executing_code": yield 'data: ' + json.dumps({"mode": "executing_code"}) + '\n\n' mode = "executing_code" code_block_open = "```python\n" code_block_close = "\n```" yield 'data: ' + json.dumps({"content": code_block_open + part.executable_code.code + code_block_close}) + '\n\n' elif hasattr(part, 'code_execution_result') and part.code_execution_result: if mode != "code_result": yield 'data: ' + json.dumps({"mode": "code_result"}) + '\n\n' mode = "code_result" result_block_open = "Résultat d'exécution:\n```\n" result_block_close = "\n```" yield 'data: ' + json.dumps({"content": result_block_open + part.code_execution_result.output + result_block_close}) + '\n\n' else: if mode != "answering": yield 'data: ' + json.dumps({"mode": "answering"}) + '\n\n' mode = "answering" if hasattr(part, 'text') and part.text: yield 'data: ' + json.dumps({"content": part.text}) + '\n\n' except Exception as e: print(f"Error during generation: {e}") yield 'data: ' + json.dumps({"error": str(e)}) + '\n\n' return Response( stream_with_context(generate()), mimetype='text/event-stream', headers={ 'Cache-Control': 'no-cache', 'X-Accel-Buffering': 'no' } ) except Exception as e: return jsonify({'error': str(e)}), 500 if __name__ == '__main__': app.run(debug=True)