File size: 788 Bytes
271a3d2
4b51045
24488cc
4b51045
6f1f950
 
24488cc
4b51045
6f1f950
24488cc
68289b0
e2b48fd
59d059f
68289b0
 
24488cc
 
68289b0
 
 
5fedf9f
68289b0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio as gr
import google.generativeai as genai

token = "AIzaSyDYhyRoOWBJWOb4bqY5wmFLrBo4HTwQDko"
genai.configure(api_key=token)

# Chargez l'image
model = genai.GenerativeModel(model_name="gemini-pro-vision")

# Fonction pour générer le contenu
def generate_content(pro, image):
    response = model.generate_content([pro, image])
    print(response.text)
    resultat = response.text
    return resultat

# Interface Gradio
iface = gr.Interface(fn=generate_content, inputs=[gr.Textbox(), gr.Image(type='pil')], outputs="text")

# Lancez l'interface Gradio
iface.launch(share=True)

# Ajoutez la sortie en Markdown
markdown = f"resultat: {resultat}"

# Utilisez Gradio Blocks pour afficher en Markdown
with gr.Blocks() as demo:
    gr.Markdown(markdown)
demo.queue().launch()