File size: 1,730 Bytes
a10ea6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from flask import Flask, request, render_template
import google.generativeai as genai
import os
from PIL import Image
import io

app = Flask(__name__)

# Configuration de l'API Gemini
token = os.environ.get("TOKEN")
genai.configure(api_key=token)

generation_config = {
    "temperature": 1,
    "top_p": 0.95,
    "top_k": 64,
    "max_output_tokens": 8192,
}

safety_settings = [
    {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
    {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
    {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
    {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
]

mm = """resous cet exercice. tu répondras en détaillant au maximum ton procédé de calcul. réponse attendue uniquement en Latex

"""
model = genai.GenerativeModel(
    model_name="gemini-1.5-pro",
    generation_config=generation_config,
    safety_settings=safety_settings,
)


@app.route("/", methods=["GET", "POST"])
def index():
    e = ""
    if request.method == "POST":
        if "image" not in request.files:
            e = "Aucune image sélectionnée."
        else:
            image_file = request.files["image"]
            try:
                image = Image.open(io.BytesIO(image_file.read()))

                response = model.generate_content([mm, image])  # Passage de l'image
                print(response.text)
                e = response.text


            except Exception as e: # gérer les erreurs potentielles d'ouverture de l'image
                  e = f"Erreur lors du traitement de l'image : {str(e)}"


    return render_template("index.html", e=e)


if __name__ == "__main__":
    app.run(debug=True)