Spaces:
Sleeping
Sleeping
from flask import Flask, request, render_template, send_from_directory | |
import google.generativeai as genai | |
import os | |
from PIL import Image | |
import io | |
import subprocess | |
import uuid | |
import re | |
import tempfile | |
app = Flask(__name__) | |
app.config['UPLOAD_FOLDER'] = 'uploads' | |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True) | |
# Configuration de l'API Gemini | |
token = os.environ.get("TOKEN") | |
if not token: | |
raise ValueError("La variable d'environnement TOKEN doit être définie.") | |
genai.configure(api_key=token) | |
generation_config = { | |
"temperature": 1, | |
"top_p": 0.95, | |
"top_k": 64, | |
"max_output_tokens": 8192, | |
} | |
safety_settings = [ | |
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"}, | |
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"}, | |
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"}, | |
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"}, | |
] | |
mm = """resous cet exercice. tu répondras en détaillant au maximum ton procédé de calcul. réponse attendue uniquement en Latex | |
""" | |
model = genai.GenerativeModel( | |
model_name="gemini-1.5-pro", | |
generation_config=generation_config, | |
safety_settings=safety_settings, | |
) | |
def index(): | |
e = "" | |
if request.method == "POST": | |
if "image" not in request.files: | |
e = "Aucune image sélectionnée." | |
else: | |
image_file = request.files["image"] | |
try: | |
with tempfile.NamedTemporaryFile(delete=False) as temp_img: | |
image_file.save(temp_img.name) | |
image = Image.open(temp_img.name) | |
response = model.generate_content([mm, image]) | |
latex_code = response.text | |
os.remove(temp_img.name) | |
match = re.search(r"\\chemfig\{(.*?)\}", latex_code, re.DOTALL) | |
if match: | |
chemfig_code = match.group(1) | |
try: | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
svg_filename = generate_svg_from_chemfig(chemfig_code, tmpdirname) | |
e = f'<img src="/uploads/{svg_filename}" alt="Structure chimique">' | |
except Exception as svg_error: | |
e = f"Erreur lors de la génération de l'image SVG : {str(svg_error)}" | |
elif any(keyword in latex_code.lower() for keyword in ['.pdf', '.png', '.jpg', '.jpeg', '.gif', '.bmp', '.svg']): | |
e = "Désolé, les images et les PDF ne sont pas encore pris en charge dans la réponse." | |
else: | |
e = latex_code | |
except Exception as img_err: | |
e = f"Erreur lors du traitement de l'image: {str(img_err)}" | |
return render_template("index.html", e=e) | |
def generate_svg_from_chemfig(chemfig_code, tmpdirname): | |
unique_id = str(uuid.uuid4()) | |
tex_filename = os.path.join(tmpdirname, f"chem_{unique_id}.tex") | |
pdf_filename = os.path.join(tmpdirname, f"chem_{unique_id}.pdf") | |
svg_filename = f"chem_{unique_id}.svg" | |
tex_content = f"""\\documentclass[margin=10pt]{{standalone}} | |
\\usepackage{{chemfig}} | |
\\begin{{document}} | |
\\chemfig{{{chemfig_code}}} | |
\\end{{document}}""" | |
with open(tex_filename, "w") as tex_file: | |
tex_file.write(tex_content) | |
try: | |
subprocess.run(["pdflatex", "-interaction=nonstopmode", tex_filename], check=True, cwd=tmpdirname) | |
subprocess.run(["pdf2svg", pdf_filename, os.path.join(app.config['UPLOAD_FOLDER'], svg_filename)], check=True) | |
return svg_filename | |
except subprocess.CalledProcessError as e: | |
raise Exception(f"Erreur lors de la compilation LaTeX ou de la conversion en SVG : {e}") | |
def uploaded_file(filename): | |
return send_from_directory(app.config['UPLOAD_FOLDER'], filename) | |
if __name__ == "__main__": | |
app.run(debug=True) |