Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,128 +1,102 @@
|
|
1 |
-
from flask import Flask,
|
2 |
import google.generativeai as genai
|
3 |
import os
|
4 |
-
from PIL import Image
|
5 |
-
import subprocess
|
6 |
-
import uuid
|
7 |
import re
|
|
|
|
|
8 |
import tempfile
|
9 |
-
|
10 |
-
|
11 |
-
app = Flask(__name__)
|
12 |
-
|
13 |
-
# Configuration constants
|
14 |
-
UPLOAD_FOLDER = Path('uploads')
|
15 |
-
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
16 |
-
|
17 |
-
# Create uploads directory if it doesn't exist
|
18 |
-
UPLOAD_FOLDER.mkdir(exist_ok=True)
|
19 |
-
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
20 |
-
|
21 |
-
# Gemini API configuration
|
22 |
-
def configure_gemini():
|
23 |
-
token = os.environ.get("TOKEN")
|
24 |
-
if not token:
|
25 |
-
raise ValueError("Environment variable TOKEN must be set.")
|
26 |
-
|
27 |
-
genai.configure(api_key=token)
|
28 |
-
|
29 |
-
generation_config = {
|
30 |
-
"temperature": 1,
|
31 |
-
"top_p": 0.95,
|
32 |
-
"top_k": 64,
|
33 |
-
"max_output_tokens": 8192,
|
34 |
-
}
|
35 |
-
|
36 |
-
safety_settings = [
|
37 |
-
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
|
38 |
-
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
|
39 |
-
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
|
40 |
-
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
|
41 |
-
]
|
42 |
-
|
43 |
-
return genai.GenerativeModel(
|
44 |
-
model_name="gemini-1.5-pro",
|
45 |
-
generation_config=generation_config,
|
46 |
-
safety_settings=safety_settings,
|
47 |
-
)
|
48 |
-
|
49 |
-
PROMPT_TEMPLATE = """
|
50 |
-
Résous cet exercice. Tu répondras en détaillant au maximum ton procédé de calcul.
|
51 |
-
Réponse attendue uniquement en LaTeX
|
52 |
-
"""
|
53 |
-
|
54 |
-
def allowed_file(filename):
|
55 |
-
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
56 |
-
|
57 |
-
def generate_svg_from_chemfig(chemfig_code, tmpdirname):
|
58 |
-
unique_id = str(uuid.uuid4())
|
59 |
-
tex_filename = Path(tmpdirname) / f"chem_{unique_id}.tex"
|
60 |
-
pdf_filename = Path(tmpdirname) / f"chem_{unique_id}.pdf"
|
61 |
-
svg_filename = f"chem_{unique_id}.svg"
|
62 |
-
|
63 |
-
tex_content = f"""\\documentclass[margin=10pt]{{standalone}}
|
64 |
-
\\usepackage{{chemfig}}
|
65 |
-
\\begin{{document}}
|
66 |
-
\\chemfig{{{chemfig_code}}}
|
67 |
-
\\end{{document}}"""
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
subprocess.run(["pdflatex", "-interaction=nonstopmode", str(tex_filename)],
|
73 |
-
check=True, cwd=tmpdirname)
|
74 |
-
subprocess.run(["pdf2svg", str(pdf_filename),
|
75 |
-
str(UPLOAD_FOLDER / svg_filename)], check=True)
|
76 |
-
return svg_filename
|
77 |
-
except subprocess.CalledProcessError as e:
|
78 |
-
raise Exception(f"LaTeX compilation or SVG conversion error: {e}")
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
def index():
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
image_file = request.files["image"]
|
89 |
-
if not image_file or not allowed_file(image_file.filename):
|
90 |
-
return render_template("index.html", e="Invalid file type. Please upload PNG or JPG.")
|
91 |
-
|
92 |
-
try:
|
93 |
-
model = configure_gemini()
|
94 |
-
|
95 |
-
with tempfile.NamedTemporaryFile(delete=False) as temp_img:
|
96 |
-
image_file.save(temp_img.name)
|
97 |
-
image = Image.open(temp_img.name)
|
98 |
-
|
99 |
-
response = model.generate_content([PROMPT_TEMPLATE, image])
|
100 |
-
latex_code = response.text
|
101 |
-
os.unlink(temp_img.name)
|
102 |
-
|
103 |
-
# Handle chemfig diagrams
|
104 |
-
match = re.search(r"\\chemfig\{(.*?)\}", latex_code, re.DOTALL)
|
105 |
-
if match:
|
106 |
-
chemfig_code = match.group(1)
|
107 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
108 |
-
svg_filename = generate_svg_from_chemfig(chemfig_code, tmpdirname)
|
109 |
-
return render_template("index.html",
|
110 |
-
e=f'<img src="/uploads/{svg_filename}" alt="Chemical structure">')
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
app.run(debug=True)
|
|
|
1 |
+
from flask import Flask, render_template, request, send_file
|
2 |
import google.generativeai as genai
|
3 |
import os
|
|
|
|
|
|
|
4 |
import re
|
5 |
+
from rdkit.Chem import MolFromSmiles, MolToImage
|
6 |
+
from rdkit.Chem.Draw import rdMolDraw2D
|
7 |
import tempfile
|
8 |
+
import uuid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Configuration de l'API Gemini
|
11 |
+
token = os.environ.get("TOKEN")
|
12 |
+
genai.configure(api_key=token)
|
13 |
+
generation_config = {
|
14 |
+
"temperature": 1,
|
15 |
+
"top_p": 0.95,
|
16 |
+
"top_k": 64,
|
17 |
+
"max_output_tokens": 8192,
|
18 |
+
}
|
19 |
+
safety_settings = [
|
20 |
+
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
|
21 |
+
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
|
22 |
+
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
|
23 |
+
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
|
24 |
+
]
|
25 |
+
model = genai.GenerativeModel(
|
26 |
+
model_name="gemini-1.5-pro",
|
27 |
+
generation_config=generation_config,
|
28 |
+
safety_settings=safety_settings,
|
29 |
+
)
|
30 |
|
31 |
+
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Dossier pour les images temporaires
|
34 |
+
app.config['UPLOAD_FOLDER'] = 'static/temp_images'
|
35 |
+
if not os.path.exists(app.config['UPLOAD_FOLDER']):
|
36 |
+
os.makedirs(app.config['UPLOAD_FOLDER'])
|
37 |
+
|
38 |
+
# Fonction pour extraire et traiter les structures chimiques
|
39 |
+
def process_chemfig(text):
|
40 |
+
chemfig_pattern = r"\\chemfig{(.*?)}"
|
41 |
+
matches = re.findall(chemfig_pattern, text)
|
42 |
+
image_paths = []
|
43 |
+
|
44 |
+
for match in matches:
|
45 |
+
# Supposons que la syntaxe est du SMILES simplifié ou une représentation compatible RDKit
|
46 |
+
try:
|
47 |
+
# mol = MolFromSmiles(match)
|
48 |
+
mol=MolFromSmiles(match)
|
49 |
+
|
50 |
+
if mol:
|
51 |
+
d = rdMolDraw2D.MolDraw2DCairo(500,500)
|
52 |
+
d.DrawMolecule(mol)
|
53 |
+
d.FinishDrawing()
|
54 |
+
image_filename = str(uuid.uuid4()) + '.png'
|
55 |
+
image_path = os.path.join(app.config['UPLOAD_FOLDER'], image_filename)
|
56 |
+
d.WriteDrawingText(image_path)
|
57 |
+
image_paths.append(image_path)
|
58 |
+
text = text.replace(f"\\chemfig{{{match}}}", f'<img src="/temp_images/{image_filename}" style="width:100%; height:auto;" alt="Structure Chimique">')
|
59 |
+
else:
|
60 |
+
text = text.replace(f"\\chemfig{{{match}}}", f'Structure Chimique non valide : {match}')
|
61 |
+
except Exception as e:
|
62 |
+
text = text.replace(f"\\chemfig{{{match}}}", f'Erreur lors du rendu de la structure : {e}')
|
63 |
+
|
64 |
+
return text, image_paths
|
65 |
+
|
66 |
+
# Route principale
|
67 |
+
@app.route('/', methods=['GET', 'POST'])
|
68 |
def index():
|
69 |
+
generated_content = ""
|
70 |
+
image_paths = []
|
71 |
+
if request.method == 'POST':
|
72 |
+
image_file = request.files.get('image')
|
73 |
+
mm = """ resous cet exercice. tu répondras en détaillant au maximum ton procédé de calcul. réponse attendue uniquement en Latex
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
"""
|
76 |
+
if image_file :
|
77 |
+
image_bytes = image_file.read()
|
78 |
+
parts=[
|
79 |
+
{
|
80 |
+
"mime_type":"image/jpeg",
|
81 |
+
"data": image_bytes
|
82 |
+
},
|
83 |
+
mm
|
84 |
+
]
|
85 |
+
response = model.generate_content(parts)
|
86 |
+
generated_content = response.text
|
87 |
+
else:
|
88 |
+
text_input= request.form.get('text_input')
|
89 |
+
response = model.generate_content(mm+text_input)
|
90 |
+
generated_content = response.text
|
91 |
+
|
92 |
+
generated_content, image_paths = process_chemfig(generated_content)
|
93 |
+
|
94 |
+
return render_template('index.html', generated_content=generated_content, image_paths=image_paths)
|
95 |
+
|
96 |
+
# Route pour servir les images temporaires
|
97 |
+
@app.route('/temp_images/<filename>')
|
98 |
+
def temp_image(filename):
|
99 |
+
return send_file(os.path.join(app.config['UPLOAD_FOLDER'], filename), mimetype='image/png')
|
100 |
+
|
101 |
+
if __name__ == '__main__':
|
102 |
app.run(debug=True)
|