mrap / app.py
Docfile's picture
Update app.py
416afb4 verified
raw
history blame
6.83 kB
import streamlit as st
import mediapipe as mp
import numpy as np
import base64
import io
import PIL.Image
import asyncio
import os
from google import genai
from streamlit_webrtc import webrtc_streamer
import av
import pyaudio
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
# Configuration
FORMAT = pyaudio.paInt16
CHANNELS = 1
SEND_SAMPLE_RATE = 16000
RECEIVE_SAMPLE_RATE = 24000
CHUNK_SIZE = 1024
# Initialize Genai client
genai.configure(api_key="AIzaSyC_zxN9IHjEAxIoshWPzMfgb9qwMsu5t5Y")
client = genai.Client(http_options={"api_version": "v1alpha"})
MODEL = "models/gemini-2.0-flash-exp"
CONFIG = {"generation_config": {"response_modalities": ["AUDIO"]}}
class AudioProcessor:
def __init__(self):
self.audio = pyaudio.PyAudio()
self.stream = None
self.audio_queue = asyncio.Queue()
def start_stream(self):
mic_info = self.audio.get_default_input_device_info()
self.stream = self.audio.open(
format=FORMAT,
channels=CHANNELS,
rate=SEND_SAMPLE_RATE,
input=True,
input_device_index=mic_info["index"],
frames_per_buffer=CHUNK_SIZE,
)
def stop_stream(self):
if self.stream:
self.stream.stop_stream()
self.stream.close()
self.stream = None
class VideoProcessor:
def __init__(self):
self.frame_queue = asyncio.Queue(maxsize=5)
self.mp_draw = mp.solutions.drawing_utils
self.mp_face_detection = mp.solutions.face_detection
self.face_detection = self.mp_face_detection.FaceDetection(
min_detection_confidence=0.5)
def video_frame_callback(self, frame):
# Convert the frame to RGB
img = frame.to_ndarray(format="rgb24")
# Process the frame with MediaPipe
results = self.face_detection.process(img)
# Draw face detection annotations if faces are detected
if results.detections:
for detection in results.detections:
self.mp_draw.draw_detection(img, detection)
# Convert to PIL Image
pil_img = PIL.Image.fromarray(img)
pil_img.thumbnail([1024, 1024])
# Prepare frame data for Gemini
image_io = io.BytesIO()
pil_img.save(image_io, format="jpeg")
image_io.seek(0)
frame_data = {
"mime_type": "image/jpeg",
"data": base64.b64encode(image_io.read()).decode()
}
try:
self.frame_queue.put_nowait(frame_data)
except asyncio.QueueFull:
pass
return av.VideoFrame.from_ndarray(img, format="rgb24")
def __del__(self):
# Cleanup MediaPipe resources
if hasattr(self, 'face_detection'):
self.face_detection.close()
def initialize_session_state():
if 'audio_processor' not in st.session_state:
st.session_state.audio_processor = AudioProcessor()
if 'video_processor' not in st.session_state:
st.session_state.video_processor = VideoProcessor()
if 'session' not in st.session_state:
st.session_state.session = None
if 'messages' not in st.session_state:
st.session_state.messages = []
def display_chat_messages():
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def main():
st.title("Gemini Interactive Assistant")
# Initialize session state
initialize_session_state()
# Sidebar configuration
st.sidebar.title("Settings")
input_mode = st.sidebar.radio(
"Input Mode",
["Text Only", "Audio + Video", "Audio Only"]
)
# Enable face detection option
enable_face_detection = st.sidebar.checkbox("Enable Face Detection", value=True)
if enable_face_detection:
detection_confidence = st.sidebar.slider(
"Face Detection Confidence",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.1
)
st.session_state.video_processor.face_detection = (
st.session_state.video_processor.mp_face_detection.FaceDetection(
min_detection_confidence=detection_confidence
)
)
# Display chat history
display_chat_messages()
# Main interaction area
if input_mode == "Text Only":
user_input = st.chat_input("Your message")
if user_input:
# Add user message to chat
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
async def send_message():
async with client.aio.live.connect(model=MODEL, config=CONFIG) as session:
await session.send(user_input, end_of_turn=True)
turn = session.receive()
async for response in turn:
if text := response.text:
# Add assistant response to chat
st.session_state.messages.append(
{"role": "assistant", "content": text}
)
with st.chat_message("assistant"):
st.markdown(text)
asyncio.run(send_message())
else:
# Video stream setup
if input_mode == "Audio + Video":
ctx = webrtc_streamer(
key="gemini-stream",
video_frame_callback=st.session_state.video_processor.video_frame_callback,
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]},
media_stream_constraints={"video": True, "audio": True},
)
# Audio controls
col1, col2 = st.columns(2)
with col1:
if st.button("Start Recording", type="primary"):
st.session_state.audio_processor.start_stream()
st.session_state['recording'] = True
with col2:
if st.button("Stop Recording", type="secondary"):
st.session_state.audio_processor.stop_stream()
st.session_state['recording'] = False
async def process_audio_stream():
while st.session_state.get('recording', False):
if st.session_state.audio_processor.stream:
data = st.session_state.audio_processor.stream.read(CHUNK_SIZE)
await st.session_state.audio_processor.audio_queue.put({
"data": data,
"mime_type": "audio/pcm"
})
await asyncio.sleep(0.1)
if __name__ == "__main__":
main()