|
import gradio as gr |
|
import google.generativeai as genai |
|
|
|
import os |
|
token=os.environ.get("TOKEN") |
|
genai.configure(api_key=token) |
|
|
|
|
|
model = genai.GenerativeModel(model_name="gemini-pro-vision") |
|
model_simple = genai.GenerativeModel(model_name="gemini-pro") |
|
|
|
e ="" |
|
|
|
def generate_content(image): |
|
global e |
|
|
|
if not image: |
|
response = model_simple.generate_content(pro) |
|
e = response.text |
|
print(e) |
|
|
|
else: |
|
response = model.generate_content([pro, image]) |
|
print(response.text) |
|
e = response.text |
|
return e |
|
|
|
|
|
markdown = r""" |
|
e |
|
""".format(e) |
|
|
|
iface = gr.Interface(fn=generate_content, inputs=gr.Image(type='pil'), outputs= gr.Markdown(markdown, latex_delimiters=[{ "left":"$$", "right":"$$", "display": True }])) |
|
|
|
iface.launch() |