Spaces:
Sleeping
Sleeping
File size: 3,924 Bytes
d9ea562 b655778 d9ea562 b655778 d9ea562 b655778 d9ea562 b655778 d9ea562 b655778 d9ea562 b655778 d9ea562 b655778 d9ea562 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
Evaluate structured output formatting for generated text.
- considers header / column / tag / key names
- DOES NOT consider the cell / row values
Formats:
- [] Custom
- [] Markdown tables
- [] HTML tables
- [] JSON
- [] XML
- [] CSV / TSV
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how well the `structure` of the predictions matches the `structure` of the references.
Args:
predictions: list of strings to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
invariance: bool, whether to consider the order of the columns / tags / keys.
Returns:
kaushiks_criteria: kaushiks_criteria score.
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("DoctorSlimm/kaushiks_criteria")
>>> results = my_new_module.compute(
references=['<table><tr><td>1</td><td>2</td></tr></table>'],
predictions=['<table><tr><td>1</td><td>2</td></tr></table>']
)
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class kaushiks_criteria(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('string'),
'references': datasets.Value('string'),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(self, predictions, references):
"""Returns the scores"""
# TODO: Compute the different scores of the module
accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
return {
"accuracy": accuracy,
} |