Spaces:
Sleeping
Sleeping
File size: 6,738 Bytes
d9ea562 b655778 4b03595 b655778 d9ea562 b655778 d9ea562 b655778 d9ea562 b655778 d9ea562 b655778 d9ea562 b655778 d9ea562 b655778 d9ea562 8b5d1da d9ea562 8b5d1da c55514d 8b5d1da 4b29cfb 707c9e4 8b5d1da 96a4701 8b5d1da 707c9e4 f99f2a0 d9ea562 f99f2a0 8b5d1da d9ea562 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
Evaluate structured output formatting for generated text.
- considers header / column / tag / key names
- DOES NOT consider the cell / row values specifically
Formats:
- [] Custom
- [] Markdown tables
- [] HTML tables
- [] JSON
- [] XML
- [] CSV / TSV
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how well the `structure` of the predictions matches the `structure` of the references.
Args:
predictions: list of strings to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
invariance: bool, whether to consider the order of the columns / tags / keys.
Returns:
kaushiks_criteria: kaushiks_criteria score.
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("DoctorSlimm/kaushiks_criteria")
>>> results = my_new_module.compute(
references=['<table><tr><td>1</td><td>2</td></tr></table>'],
predictions=['<table><tr><td>1</td><td>2</td></tr></table>']
)
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class kaushiks_criteria(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('string'),
'references': datasets.Value('string'),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
import evaluate
evaluate.load('exact_match')
pass
def normalize_fn(self, example, text_field='text'):
"""
parse output text into headers, rows, and records
- parse row by row (incomplete rows)
:param example:
:return:
Note: this does not handle special tokens
expected input format:
| col1 | col2 | col3 | <- start and trailing pipes required
| ---- | ---- | ---- | <- exactly 3x '-' per column
| val1 | val2 | val3 |
| ... | ... | ... |
"""
headers, sep_row, row_counts = "", "", []
rows = dict(example)[text_field].strip().split('\n')
# parse headers
if len(rows) > 0:
headers = rows[0].strip()
# parse separator row
if len(rows) > 1:
sep_row = rows[1].strip()
# parse row cell counts
if len(rows) > 2:
data_rows = rows[2:]
for row in data_rows:
cell_counts = len(row.strip('|').split('|'))
row_counts.append(str(int(cell_counts)))
return {
'headers': headers,
'sep_row': sep_row,
'row_counts': ''.join(row_counts)
}
def _compute(self, predictions, references, num_proc=None):
"""
compute the quality of the output format with respect to the reference format
* column names match
* column order matches
* total row count
* number of cells in each row
:param predictions:
:param references:
:return:
"""
from datasets import Dataset, DatasetDict
pred_ds = Dataset.from_dict({'text': predictions})
refs_ds = Dataset.from_dict({'text': references})
proc_ds = DatasetDict({'predictions': pred_ds, 'references': refs_ds})
proc_ds = proc_ds.map(
self.normalize_fn,
num_proc=num_proc,
load_from_cache_file=False
)
# compare headers
exact_match = evaluate.load('exact_match')
exact_match_headers = exact_match.compute(
predictions=proc_ds['predictions']['headers'],
references=proc_ds['references']['headers']
)['exact_match']
# compare separator row
exact_match_sep_row = exact_match.compute(
predictions=proc_ds['predictions']['sep_row'],
references=proc_ds['references']['sep_row']
)['exact_match']
# compare row counts
exact_match_row_counts = exact_match.compute(
predictions=proc_ds['predictions']['row_counts'],
references=proc_ds['references']['row_counts']
)['exact_match']
# compute kaushiks_criteria
score = (exact_match_headers + exact_match_sep_row + exact_match_row_counts) / 3.0
return {
'kaushiks_criteria': score,
'exact_match_headers': exact_match_headers,
'exact_match_sep_row': exact_match_sep_row,
'exact_match_row_counts': exact_match_row_counts,
} |