File size: 6,877 Bytes
d9ea562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b655778
 
4b03595
b655778
 
 
 
 
 
 
 
d9ea562
 
 
 
 
b655778
d9ea562
b655778
d9ea562
 
 
b655778
d9ea562
b655778
d9ea562
 
 
 
b655778
 
 
 
 
d9ea562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b655778
 
d9ea562
 
 
 
 
 
 
 
 
 
 
8b5d1da
 
d9ea562
 
8b5d1da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c55514d
8b5d1da
 
 
 
 
 
 
 
 
 
4b29cfb
707c9e4
8b5d1da
 
 
96a4701
 
 
 
 
8b5d1da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707c9e4
f99f2a0
 
 
93fa864
 
f99f2a0
8b5d1da
 
 
93fa864
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
Evaluate structured output formatting for generated text.
- considers header / column / tag / key names
- DOES NOT consider the cell / row values specifically

Formats:
    - [] Custom
    - [] Markdown tables
    - [] HTML tables
    - [] JSON
    - [] XML
    - [] CSV / TSV 
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how well the `structure` of the predictions matches the `structure` of the references.
Args:
    predictions: list of strings to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
    invariance: bool, whether to consider the order of the columns / tags / keys.
Returns:
    kaushiks_criteria: kaushiks_criteria score.
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("DoctorSlimm/kaushiks_criteria")
    >>> results = my_new_module.compute(
            references=['<table><tr><td>1</td><td>2</td></tr></table>'],
            predictions=['<table><tr><td>1</td><td>2</td></tr></table>']
        )
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class kaushiks_criteria(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Value('string'),
                'references': datasets.Value('string'),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        import evaluate
        evaluate.load('exact_match')
        pass

    def normalize_fn(self, example, text_field='text'):
        """
        parse output text into headers, rows, and records
        - parse row by row (incomplete rows)
        :param example:
        :return:
        Note: this does not handle special tokens
        expected input format:

        | col1 | col2 | col3 |      <- start and trailing pipes required
        | ---- | ---- | ---- |      <- exactly 3x '-' per column
        | val1 | val2 | val3 |
        | ... | ... | ... |
        """
        headers, sep_row, row_counts = "", "", []

        rows = dict(example)[text_field].strip().split('\n')

        # parse headers
        if len(rows) > 0:
            headers = rows[0].strip()

        # parse separator row
        if len(rows) > 1:
            sep_row = rows[1].strip()

        # parse row cell counts
        if len(rows) > 2:
            data_rows = rows[2:]
            for row in data_rows:
                cell_counts = len(row.strip('|').split('|'))
                row_counts.append(str(int(cell_counts)))
        return {
            'headers': headers,
            'sep_row': sep_row,
            'row_counts': ''.join(row_counts)
        }

    def _compute(self, predictions, references, num_proc=None):
        """
        compute the quality of the output format with respect to the reference format
        * column names match
        * column order matches
        * total row count
        * number of cells in each row
        :param predictions:
        :param references:
        :return:
        """
        from datasets import Dataset, DatasetDict

        pred_ds = Dataset.from_dict({'text': predictions})
        refs_ds = Dataset.from_dict({'text': references})
        proc_ds = DatasetDict({'predictions': pred_ds, 'references': refs_ds})
        proc_ds = proc_ds.map(
            self.normalize_fn,
            num_proc=num_proc,
            load_from_cache_file=False
        )

        # compare headers
        exact_match = evaluate.load('exact_match')
        exact_match_headers = exact_match.compute(
            predictions=proc_ds['predictions']['headers'],
            references=proc_ds['references']['headers']
        )['exact_match']

        # compare separator row
        exact_match_sep_row = exact_match.compute(
            predictions=proc_ds['predictions']['sep_row'],
            references=proc_ds['references']['sep_row']
        )['exact_match']

        # compare row counts
        exact_match_row_counts = exact_match.compute(
            predictions=proc_ds['predictions']['row_counts'],
            references=proc_ds['references']['row_counts']
        )['exact_match']

        # compute kaushiks_criteria
        score = (exact_match_headers + exact_match_sep_row + exact_match_row_counts) / 3.0

        # round and return
        metrics = {
            'kaushiks_criteria': score,
            'exact_match_headers': exact_match_headers,
            'exact_match_sep_row': exact_match_sep_row,
            'exact_match_row_counts': exact_match_row_counts,
        }
        for key, value in metrics.items():
            metrics[key] = round(value, 2)
        return metrics