# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import evaluate import datasets # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ # TODO: Add description of the module here _DESCRIPTION = """\ Evaluate structured output formatting for generated text. - considers header / column / tag / key names - DOES NOT consider the cell / row values specifically Formats: - [] Custom - [] Markdown tables - [] HTML tables - [] JSON - [] XML - [] CSV / TSV """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how well the `structure` of the predictions matches the `structure` of the references. Args: predictions: list of strings to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. invariance: bool, whether to consider the order of the columns / tags / keys. Returns: kaushiks_criteria: kaushiks_criteria score. Examples: Examples should be written in doctest format, and should illustrate how to use the function. >>> my_new_module = evaluate.load("DoctorSlimm/kaushiks_criteria") >>> results = my_new_module.compute( references=['
12
'], predictions=['
12
'] ) >>> print(results) {'accuracy': 1.0} """ # TODO: Define external resources urls if needed BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class kaushiks_criteria(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ 'predictions': datasets.Value('string'), 'references': datasets.Value('string'), }), # Homepage of the module for documentation homepage="http://module.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # TODO: Download external resources if needed import evaluate evaluate.load('exact_match') pass def normalize_fn(self, example, text_field='text'): """ parse output text into headers, rows, and records - parse row by row (incomplete rows) :param example: :return: Note: this does not handle special tokens expected input format: | col1 | col2 | col3 | <- start and trailing pipes required | ---- | ---- | ---- | <- exactly 3x '-' per column | val1 | val2 | val3 | | ... | ... | ... | """ headers, sep_row, row_counts = "", "", [] rows = dict(example)[text_field].strip().split('\n') # parse headers if len(rows) > 0: headers = rows[0].strip() # parse separator row if len(rows) > 1: sep_row = rows[1].strip() # parse row cell counts if len(rows) > 2: data_rows = rows[2:] for row in data_rows: cell_counts = len(row.strip('|').split('|')) row_counts.append(str(int(cell_counts))) return { 'headers': headers, 'sep_row': sep_row, 'row_counts': ''.join(row_counts) } def _compute(self, predictions, references, num_proc=None): """ compute the quality of the output format with respect to the reference format * column names match * column order matches * total row count * number of cells in each row :param predictions: :param references: :return: """ from datasets import Dataset, DatasetDict pred_ds = Dataset.from_dict({'text': predictions}) refs_ds = Dataset.from_dict({'text': references}) proc_ds = DatasetDict({'predictions': pred_ds, 'references': refs_ds}) proc_ds = proc_ds.map( self.normalize_fn, num_proc=num_proc, load_from_cache_file=False ) # compare headers exact_match = evaluate.load('exact_match') exact_match_headers = exact_match.compute( predictions=proc_ds['predictions']['headers'], references=proc_ds['references']['headers'] )['exact_match'] # compare separator row exact_match_sep_row = exact_match.compute( predictions=proc_ds['predictions']['sep_row'], references=proc_ds['references']['sep_row'] )['exact_match'] # compare row counts exact_match_row_counts = exact_match.compute( predictions=proc_ds['predictions']['row_counts'], references=proc_ds['references']['row_counts'] )['exact_match'] # compute kaushiks_criteria score = (exact_match_headers + exact_match_sep_row + exact_match_row_counts) / 3.0 return { 'kaushiks_criteria': score, 'exact_match_headers': exact_match_headers, 'exact_match_sep_row': exact_match_sep_row, 'exact_match_row_counts': exact_match_row_counts, }