import gradio as gr from diffusers import DDPMPipeline import torch # Load model pipe = DDPMPipeline.from_pretrained("Docty/pipecorrode", torch_dtype=torch.float16) pipe.to("cuda" if torch.cuda.is_available() else "cpu") # Generation function def generate_images(num_images: int = 1, steps: int = 50): output = pipe(num_inference_steps=steps, batch_size=num_images) return output.images # Gradio Interface gr.Interface( fn=generate_images, inputs=[ gr.Slider(1, 8, step=1, label="Number of Images"), gr.Slider(10, 100, step=10, label="Sampling Steps"), ], outputs=gr.Gallery(label="Generated Images"), title="Unconditional Diffusion Generator" ).launch()