Spaces:
Running
Running
import torch | |
from PIL import Image | |
import gradio as gr | |
from diffusers import StableDiffusionImg2ImgPipeline | |
# Load the Stable Diffusion img2img pipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
torch_dtype=torch.float16, | |
).to(device) | |
#pipe.enable_attention_slicing() | |
# Predefined prompts | |
PROMPTS = { | |
"Photorealistic": "A heavily corroded metal pipeline stretching across the ocean floor, covered in algae and barnacles, deep underwater with ambient blue lighting and floating particles, photorealistic", | |
"Cinematic": "An old rusted pipeline submerged in the sea, encrusted with marine growth and decay, surrounded by dark water and shafts of light from the surface, cinematic, moody atmosphere" | |
} | |
# Inference function | |
def generate_image(init_image, prompt_choice, strength, guidance_scale): | |
# Resize and convert the input image | |
init_image = init_image.convert("RGB").resize((768, 512)) | |
# Get the selected prompt | |
prompt = PROMPTS[prompt_choice] | |
# Run the pipeline | |
result = pipe( | |
prompt=prompt, | |
image=init_image, | |
strength=strength, | |
guidance_scale=guidance_scale | |
).images[0] | |
return result | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("Corroded Pipeline Generator - Underwater Img2Img") | |
with gr.Row(): | |
with gr.Column(): | |
init_image = gr.Image(label="Upload Initial Image", type="pil") | |
prompt_choice = gr.Radio(choices=list(PROMPTS.keys()), label="Select Prompt", value="Photorealistic") | |
strength = gr.Slider(minimum=0.2, maximum=1.0, value=0.75, step=0.05, label="Transformation Strength") | |
guidance_scale = gr.Slider(minimum=1, maximum=15, value=7.5, step=0.5, label="Prompt Guidance Scale") | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
generate_btn.click(fn=generate_image, inputs=[init_image, prompt_choice, strength, guidance_scale], outputs=output_image) | |
# Launch the app | |
demo.launch() | |