import time import re import os import requests import json from api_keys import meshy_api_key from api_keys import gpt_api_key import openai def shouldStop(input_str, model="gpt-3.5-turbo"): openai.api_key = gpt_api_key prompt = f"determine whether the text delimited by triple backticks contains number 1 at the end. {input_str} \n Format: 1/0" messages = [{"role": "user", "content": prompt}] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=0, # this is the degree of randomness of the model's output ) return response.choices[0].message["content"] def extract_text_surrounded_by_backticks(input_string): # Define a regular expression pattern to match text within triple backticks pattern = r'```(.*?)```' # Use re.DOTALL to match across multiple lines, including newline characters extracted_text = re.findall(pattern, input_string, re.DOTALL) # If extracted_text is not empty, return the first match; otherwise, return None return extracted_text[0] if extracted_text else None def text_to_3d_gen(extracted_str): payload = {"object_prompt":"", "style_prompt":"", "enable_pbr": True, "art_style": "", "negative_prompt":"low quality, low resolution, blurry, ugly, "} response_dict = json.loads(extracted_str) for i in payload.keys(): if i == "enable_pbr": continue if i != "negative_prompt": payload[i] = response_dict[i] else: payload[i] += response_dict[i] return payload def create_meshy_object(payload, target="3d"): headers = { "Authorization": f"Bearer {meshy_api_key}" } response = requests.post( f"https://api.meshy.ai/v1/text-to-{target}", headers=headers, json=payload, ) response.raise_for_status() meshy_response = response.json() text_file = open("id.txt", "w") text_file.write(meshy_response["result"]) text_file.close() return meshy_response["result"] def download_model(task_id, target="3d"): headers = { "Authorization": f"Bearer {meshy_api_key}" } # print(retrieve_response["progress"]) print_once = True; # Extract the "model_url" while True: response = requests.get( f"https://api.meshy.ai/v1/text-to-{target}/{task_id}", headers=headers, ) response.raise_for_status() # Convert the JSON response to a Python dictionary retrieve_response = json.loads(response.text) if retrieve_response["progress"] == 100: model_url = retrieve_response["model_url"] # Get the directory of the script script_dir = os.path.dirname(os.path.abspath(__file__)) # Define the file name file_name = f"{task_id}.glb" # Define the complete file path file_path = os.path.join(script_dir, file_name) # Check if the file already exists if not os.path.isfile(file_path): # Download the file response = requests.get(model_url) if response.status_code == 200: with open(file_path, "wb") as file: file.write(response.content) print(f"File downloaded successfully to {file_path}.") else: print(f"File download failed with status code {response.status_code}.") if "error" in response.text: error_message = json.loads(response.text)["error"] print(f"Error message: {error_message}") else: print(f"File '{file_path}' already exists. Skipping download.") break else: if print_once: print("the model is still in progress...") print_once = False time.sleep(10) #