File size: 5,747 Bytes
8d14bb9
 
 
 
8a5db1d
db6e2f8
8d14bb9
 
 
 
 
 
 
 
 
 
 
8a5db1d
 
 
 
 
 
 
8d14bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6e2f8
7ecf241
8d14bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a5db1d
 
 
 
 
 
8d14bb9
8a5db1d
8d14bb9
8a5db1d
 
8d14bb9
 
 
8a5db1d
8d14bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a5db1d
db6e2f8
7ecf241
51eabf2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import requests
from flask import Flask, render_template, request, send_from_directory
from datetime import datetime
from bs4 import BeautifulSoup

app = Flask(__name__)
with open('i.txt', 'r') as file:
    data = file.read()

API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
headers = {"Authorization": f"Bearer hf{data}"}


def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

API_URLAR = "https://api-inference.huggingface.co/models/Helsinki-NLP/opus-mt-tc-big-en-ar"

def queryar(ar):
    response = requests.post(API_URLAR, headers=headers, json=ar)
    return response.json()


conversation_history = []

def generate_response(user_input):
    bitcoin_price, current_time = get_bitcoin_price()
    result = get_div_content(url)
    new_query = {
        "inputs": f"information about yourself: you are helpful assistant and your name is (Niron) , you are trained and proggramed by Mr.omar nuwara he is create you for btc trad and predicition start chat with user with use good Emojeis\n\nBtc Price Now :${bitcoin_price} date and time now: {current_time}\n\n Bitcoin history Tidy is (Date/open/high/low/close/adj close/Volume): {result}\n\nLast news:{news}\n\ntask:complete the reesponse:\n\nconversation history:{conversation_history}\n\nUser message:{user_input}\n\nmake sure to response about it and don't generate alot of words just based on the user message and Use Emojies\n\nresponse:",
        "parameters": {
            "top_k": 100,
            "top_p": 0.9,
            "temperature": 0.5,
            "repetition_penalty": 1.2,
            "max_new_tokens": 512,
            "max_time": 0,
            "return_full_text": True,
            "num_return_sequences": 1,
            "do_sample": False
        },
        "options": {
            "use_cache": False,
            "wait_for_model": False
        }
    }

    output = query(new_query)

    generated_text = output[0]['generated_text']

    response_start = generated_text.find('response:') + len('response:')
    response_end = generated_text.find('(end response)')

    response_text = generated_text[response_start:response_end].strip()

    note_index = response_text.find("Note:")
    if note_index != -1:
        response_text = response_text[:note_index].strip()

    instruction_index = response_text.find("### Instruction:")
    if instruction_index != -1:
        response_text = response_text[:instruction_index].strip()
    
    response_text = response_text.strip().replace('\n', '<br>')

    return response_text
def get_bitcoin_price():
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    url = 'https://api.coindesk.com/v1/bpi/currentprice.json'
    response = requests.get(url)

    if response.status_code == 200:
        data = response.json()
        bitcoin_price = data['bpi']['USD']['rate']
        return bitcoin_price, current_time
    


@app.route('/assets/<path:path>')
def send_static(path):
    return send_from_directory('assets', path)


@app.route('/')
def index():
    result = get_div_content(url)
    news = get_news(url)
    return render_template('admin.html')

@app.route('/chat', methods=['POST'])
def chat():
    user_input = request.get_json()['user_input']
    
    # Generate AI response based on user input
    response_text = generate_response(user_input)
    conversation_history.append({"User": user_input, "NIRON": response_text})
    
    # Update bitcoin price and current time
    bitcoin_price, current_time = get_bitcoin_price()

    return response_text

@app.route('/trans')
def trans():
    news = get_news(url)
    result = get_div_content(url)

    return render_template('arabic.html')


@app.route('/arabic', methods=['POST'])
def arabic():
    user_input = request.get_json()['user_input']
    
    # Generate AI response based on user input
    response_text = generate_response(user_input)
    conversation_history.append({"User": user_input, "\nAI": response_text})    
    # Translate the response to Arabic using the Hugging Face API
    translation_payload = {
        "inputs": response_text,
    }
    output = queryar(translation_payload)
    
    translated_response = output[0]['translation_text']
    
    # Append the conversation history

    
    # Update bitcoin price and current time
    bitcoin_price, current_time = get_bitcoin_price()
    
    return translated_response

def get_div_content(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.content, 'html.parser')
    
    div_content = soup.find('div', {'id': '45'})
    if div_content:
        return div_content
    else:
        return None

url = "https://dooratre-info.hf.space/?logs=container&__sign=eyJhbGciOiJFZERTQSJ9.eyJyZWFkIjp0cnVlLCJwZXJtaXNzaW9ucyI6eyJyZXBvLmNvbnRlbnQucmVhZCI6dHJ1ZX0sIm9uQmVoYWxmT2YiOnsia2luZCI6InVzZXIiLCJfaWQiOiI2NWIyYzMyNjJiZTk2NjBmMGIxMjg0MDAiLCJ1c2VyIjoiRG9vcmF0cmUifSwiaWF0IjoxNzEyNjgwNTY4LCJzdWIiOiIvc3BhY2VzL0Rvb3JhdHJlL2luZm8iLCJleHAiOjE3MTI3NjY5NjgsImlzcyI6Imh0dHBzOi8vaHVnZ2luZ2ZhY2UuY28ifQ.R_PX6Hw5SMheYTQWPGe1Qla9q8gVBU0mAFF_u8Iad06jSpZ9sPzZqquSowWn7PGVLRYBW21DnvqSwXIoNZ4CAA"

result = get_div_content(url)
print(result)



@app.route('/clear_history')
def clear_history():
    global conversation_history
    conversation_history = []
    return 'Conversation history cleared successfully'



def get_news(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.content, "html.parser")

    news = []
    for text in soup.stripped_strings:
        news.append(text)

    return news

url = "https://www.newsbtc.com/"
news = get_news(url)
print(news)
    

if __name__ == '__main__':
    app.run(host="0.0.0.0",  port=7860)