|
import requests |
|
from flask import Flask, render_template, request |
|
import speech_recognition as sr |
|
|
|
app = Flask(__name__) |
|
with open('i.txt', 'r') as file: |
|
data = file.read() |
|
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1" |
|
headers = {"Authorization": f"Bearer hf{data}"} |
|
|
|
recognizer = sr.Recognizer() |
|
|
|
def query(payload): |
|
response = requests.post(API_URL, headers=headers, json=payload) |
|
return response.json() |
|
|
|
conversation_history = [] |
|
|
|
def generate_response(user_input): |
|
new_query = { |
|
"inputs": f"you are ai for help in anything you are created by Mr,Omar Nuwara he is made you \n\n make sure to help people in anything \n\ntask:complete the reesponse:\n\nconversation history:{conversation_history}\n\nuser message:{user_input}\n\nmake sure to response about it and don't generate alot of words just based on the user message \n\n\n\nresponse:", |
|
"parameters": { |
|
"top_k": 50, |
|
"top_p": 0.9, |
|
"temperature": 0.1, |
|
"repetition_penalty": 1.2, |
|
"max_new_tokens": 512, |
|
"max_time": 0, |
|
"return_full_text": True, |
|
"num_return_sequences": 1, |
|
"do_sample": False |
|
}, |
|
"options": { |
|
"use_cache": False, |
|
"wait_for_model": False |
|
} |
|
} |
|
|
|
output = query(new_query) |
|
|
|
generated_text = output[0]['generated_text'] |
|
|
|
response_start = generated_text.find('response:') + len('response:') |
|
response_end = generated_text.find('(end response)') |
|
|
|
response_text = generated_text[response_start:response_end].strip() |
|
|
|
note_index = response_text.find("Note:") |
|
if note_index != -1: |
|
response_text = response_text[:note_index].strip() |
|
|
|
instruction_index = response_text.find("### Instruction:") |
|
if instruction_index != -1: |
|
response_text = response_text[:instruction_index].strip() |
|
|
|
return response_text |
|
|
|
@app.route('/') |
|
def index(): |
|
return render_template('index.html') |
|
|
|
@app.route('/chat', methods=['POST']) |
|
def chat(): |
|
user_input = request.form['user_input'] |
|
|
|
|
|
response_text = generate_response(user_input) |
|
conversation_history.append({"User": user_input, "AI": response_text}) |
|
|
|
return response_text |
|
|
|
|
|
if __name__ == '__main__': |
|
app.run(debug=True) |