Dooratre commited on
Commit
6941595
·
verified ·
1 Parent(s): bfd77d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -19
app.py CHANGED
@@ -1,8 +1,8 @@
1
- from flask import Flask, render_template, request, send_from_directory, jsonify
2
  from datetime import datetime
3
- import requests
4
  from langchain_community.llms import HuggingFaceHub
5
  from langchain.prompts import PromptTemplate
 
6
  import json
7
  import nltk
8
  from textblob import TextBlob
@@ -12,9 +12,11 @@ from nltk.stem import WordNetLemmatizer
12
  import spacy
13
  from bs4 import BeautifulSoup
14
 
 
15
  nltk.download('punkt')
16
  nltk.download('wordnet')
17
 
 
18
  def download_spacy_model():
19
  import spacy
20
  try:
@@ -29,8 +31,13 @@ nlp = spacy.load("en_core_web_sm")
29
 
30
  app = Flask(__name__)
31
 
32
- template = "Message: {message}\n\nSentiment Analysis: {sentiment}\n\nConversation History: {history}\n\nDate and Time: {date_time}\n\nBitcoin Price: ${bitcoin_price}\n\nBitcoin Data: {database_tag}\n\nResponse: {response}"
33
- prompt = PromptTemplate(template=template, input_variables=["message", "sentiment", "history", "date_time", "bitcoin_price", "database_tag", "response"])
 
 
 
 
 
34
  conversation_history = []
35
 
36
  MAX_HISTORY_LENGTH = 55
@@ -40,20 +47,26 @@ def update_conversation_history(message):
40
  conversation_history.pop(0)
41
  conversation_history.append(message)
42
 
 
43
  def get_bitcoin_price():
 
44
  url = 'https://api.coindesk.com/v1/bpi/currentprice.json'
45
  response = requests.get(url)
46
-
47
  if response.status_code == 200:
48
  data = response.json()
49
  bitcoin_price = data['bpi']['USD']['rate']
50
- current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
51
  return bitcoin_price, current_time
52
  else:
53
- return 'Error fetching data', None
 
 
 
 
54
 
55
  @app.route('/')
56
  def index():
 
57
  return render_template('index.html', conversation=conversation_history)
58
 
59
  @app.route('/submit', methods=['POST'])
@@ -75,31 +88,30 @@ def submit():
75
 
76
  conversation_history.append("User: " + user_input)
77
 
78
- history_tokens = word_tokenize(" ".join(conversation_history))
79
  history_stemmed_tokens = [ps.stem(token) for token in history_tokens]
80
  history_lemmatized_tokens = [lemmatizer.lemmatize(token) for token in history_tokens]
81
 
82
- model_input = prompt.format(message=user_input, sentiment=sentiment, history=" ".join(conversation_history), database_tag="Placeholder", date_time=current_time, bitcoin_price=bitcoin_price, response="")
 
 
 
 
 
 
83
 
84
- response = "Placeholder response" # Update with actual response generation logic
85
 
86
- = "Bot: " + response
87
- update_conversation_history(response_message)
88
 
89
- return response_message
90
-
91
 
92
  @app.route('/clear_history')
93
  def clear_history():
94
  global conversation_history
95
  conversation_history = []
96
  return 'Conversation history cleared'
97
-
98
- @app.route('/assets/<path:path>')
99
- def send_static(path):
100
- return send_from_directory('assets', path)
101
 
102
-
103
  with open('i.txt', 'r') as file:
104
  data = file.read()
105
 
 
1
+ from flask import Flask, render_template, request, send_from_directory
2
  from datetime import datetime
 
3
  from langchain_community.llms import HuggingFaceHub
4
  from langchain.prompts import PromptTemplate
5
+ import requests
6
  import json
7
  import nltk
8
  from textblob import TextBlob
 
12
  import spacy
13
  from bs4 import BeautifulSoup
14
 
15
+ # Download NLTK resources
16
  nltk.download('punkt')
17
  nltk.download('wordnet')
18
 
19
+ # Download Spacy model
20
  def download_spacy_model():
21
  import spacy
22
  try:
 
31
 
32
  app = Flask(__name__)
33
 
34
+ # Load the JSON data from the file
35
+ with open('ai_chatbot_data.json', 'r') as file:
36
+ json_data = json.load(file)
37
+
38
+ # Updated prompt template for Bitcoin trading
39
+ template = "User Message: {message}\n\nUser Sentiment: {sentiment}\n\nConversation History: {history}\n\nDate and Time: {date_time}\n\nBitcoin Price: ${bitcoin_price}\n\nBitcoin History: {database_tag}\n\nAI System Data: {json_data}\n\nResponse:"
40
+ prompt = PromptTemplate(template=template, input_variables=["message", "sentiment", "history", "date_time", "bitcoin_price", "database_tag", "json_data"])
41
  conversation_history = []
42
 
43
  MAX_HISTORY_LENGTH = 55
 
47
  conversation_history.pop(0)
48
  conversation_history.append(message)
49
 
50
+ # Function to retrieve Bitcoin price
51
  def get_bitcoin_price():
52
+ current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
53
  url = 'https://api.coindesk.com/v1/bpi/currentprice.json'
54
  response = requests.get(url)
55
+
56
  if response.status_code == 200:
57
  data = response.json()
58
  bitcoin_price = data['bpi']['USD']['rate']
 
59
  return bitcoin_price, current_time
60
  else:
61
+ return 'Error fetching data', current_time
62
+
63
+ @app.route('/assets/<path:path>')
64
+ def send_static(path):
65
+ return send_from_directory('assets', path)
66
 
67
  @app.route('/')
68
  def index():
69
+ global conversation_history
70
  return render_template('index.html', conversation=conversation_history)
71
 
72
  @app.route('/submit', methods=['POST'])
 
88
 
89
  conversation_history.append("User: " + user_input)
90
 
91
+ history_tokens = word_tokenize("\n".join(conversation_history))
92
  history_stemmed_tokens = [ps.stem(token) for token in history_tokens]
93
  history_lemmatized_tokens = [lemmatizer.lemmatize(token) for token in history_tokens]
94
 
95
+ model_input = prompt.format(message=user_input, sentiment=sentiment, history="\n".join(conversation_history),
96
+ database_tag="Bitcoin Data Placeholder", date_time=current_time, bitcoin_price=bitcoin_price, json_data=json_data)
97
+
98
+ response = llm(model_input, context="<br>".join(conversation_history))
99
+
100
+ bot_response = response.split('Response:')[1].strip()
101
+ bot_response = bot_response.strip().replace('\n', '<br>')
102
 
103
+ update_conversation_history("Bot: " + bot_response)
104
 
105
+ conversation_html = '<br>'.join(conversation_history)
 
106
 
107
+ return bot_response
 
108
 
109
  @app.route('/clear_history')
110
  def clear_history():
111
  global conversation_history
112
  conversation_history = []
113
  return 'Conversation history cleared'
 
 
 
 
114
 
 
115
  with open('i.txt', 'r') as file:
116
  data = file.read()
117