Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,142 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
2 |
import requests
|
3 |
import json
|
4 |
-
|
5 |
-
|
6 |
-
from
|
7 |
-
|
8 |
-
from
|
9 |
-
from modules.dataset import query_emotion
|
10 |
-
|
11 |
-
# https://huggingface.co/settings/tokens
|
12 |
-
# https://huggingface.co/spaces/{username}/{space}/settings
|
13 |
-
API_TOKEN = os.getenv("BIG_GAN_TOKEN")
|
14 |
|
15 |
app = Flask(__name__)
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
@app.route("/infer_biggan")
|
24 |
-
def biggan():
|
25 |
-
input = request.args.get("input")
|
26 |
-
|
27 |
-
output = requests.request(
|
28 |
-
"POST",
|
29 |
-
"https://api-inference.huggingface.co/models/osanseviero/BigGAN-deep-128",
|
30 |
-
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
31 |
-
data=json.dumps(input),
|
32 |
-
)
|
33 |
|
34 |
-
|
|
|
|
|
35 |
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
return
|
44 |
-
|
45 |
-
|
46 |
-
@app.route("/query_emotion")
|
47 |
-
def emotion():
|
48 |
-
start = request.args.get("start")
|
49 |
-
end = request.args.get("end")
|
50 |
-
|
51 |
-
print(start)
|
52 |
-
print(end)
|
53 |
-
|
54 |
-
output = query_emotion(int(start), int(end))
|
55 |
-
|
56 |
-
return jsonify({"output": output})
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
app.run(host="0.0.0.0", port=7860)
|
|
|
1 |
+
from flask import Flask, render_template, request, send_from_directory, url_for
|
2 |
+
from datetime import datetime
|
3 |
+
from langchain_community.llms import HuggingFaceHub
|
4 |
+
from langchain.prompts import PromptTemplate
|
5 |
import requests
|
6 |
import json
|
7 |
+
import nltk
|
8 |
+
from textblob import TextBlob
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
+
from nltk.stem import PorterStemmer
|
11 |
+
from nltk.stem import WordNetLemmatizer
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
|
15 |
+
# Load the JSON data from the file
|
16 |
+
with open('ai_chatbot_data.json', 'r') as file:
|
17 |
+
json_data = json.load(file)
|
18 |
|
19 |
+
with open('info.txt', 'r') as file:
|
20 |
+
database_content = file.read()
|
21 |
+
database_tag = database_content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
template = "Message: {message}\n\nConversation History: {history}\n\nDate and Time: {date_time}\n\nBitcoin Price: ${bitcoin_price}\n\nBitcoin history from 1-jan-2024 to today: {database_tag}\n\nYour system: {json_data}.\n\nResponse:"
|
24 |
+
prompt = PromptTemplate(template=template, input_variables=["message","history", "date_time", "bitcoin_price", "database_tag", "json_data"])
|
25 |
+
conversation_history = []
|
26 |
|
27 |
+
def get_bitcoin_price():
|
28 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
29 |
+
url = 'https://api.coindesk.com/v1/bpi/currentprice.json'
|
30 |
+
response = requests.get(url)
|
31 |
|
32 |
+
if response.status_code == 200:
|
33 |
+
data = response.json()
|
34 |
+
bitcoin_price = data['bpi']['USD']['rate']
|
35 |
+
return bitcoin_price, current_time
|
36 |
+
else:
|
37 |
+
return 'Error fetching data', current_time
|
38 |
|
39 |
+
@app.route('/assets/<path:path>')
|
40 |
+
def send_static(path):
|
41 |
+
return send_from_directory('assets', path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
@app.route('/')
|
44 |
+
def index():
|
45 |
+
global conversation_history
|
46 |
+
return render_template('index.html', conversation=conversation_history)
|
47 |
+
|
48 |
+
@app.route('/submit', methods=['POST'])
|
49 |
+
def submit():
|
50 |
+
user_input = request.json.get('user_input')
|
51 |
+
|
52 |
+
tokens = word_tokenize(user_input)
|
53 |
+
ps = PorterStemmer()
|
54 |
+
stemmed_tokens = [ps.stem(token) for token in tokens]
|
55 |
+
|
56 |
+
lemmatizer = WordNetLemmatizer()
|
57 |
+
lemmatized_tokens = [lemmatizer.lemmatize(token) for token in tokens]
|
58 |
+
|
59 |
+
sentiment = TextBlob(user_input).sentiment
|
60 |
+
|
61 |
+
bitcoin_price, current_time = get_bitcoin_price()
|
62 |
+
|
63 |
+
conversation_history.append("User: " + user_input)
|
64 |
+
|
65 |
+
# NLTK processing for conversation history
|
66 |
+
history_tokens = word_tokenize("<br>".join(conversation_history))
|
67 |
+
history_stemmed_tokens = [ps.stem(token) for token in history_tokens]
|
68 |
+
history_lemmatized_tokens = [lemmatizer.lemmatize(token) for token in history_tokens]
|
69 |
+
|
70 |
+
|
71 |
+
model_input = prompt.format(message=user_input, history="<br>".join(conversation_history), database_tag=database_content, date_time=current_time, bitcoin_price=bitcoin_price, json_data=json_data,history_tokens=history_tokens,history_stemmed_tokens=history_stemmed_tokens,history_lemmatized_tokens=history_lemmatized_tokens)
|
72 |
+
response = llm(model_input)
|
73 |
+
|
74 |
+
bot_response = response.split('Response:')[1].strip()
|
75 |
+
bot_response = bot_response.strip().replace('\n', '<br>')
|
76 |
+
conversation_history.append("Bot: " + bot_response)
|
77 |
+
|
78 |
+
conversation_html = '<br>'.join(conversation_history)
|
79 |
+
|
80 |
+
return bot_response
|
81 |
+
##############################################################################################
|
82 |
+
@app.route('/add_data', methods=['GET', 'POST'])
|
83 |
+
def add_data():
|
84 |
+
if request.method == 'POST':
|
85 |
+
date = request.form['date']
|
86 |
+
open_price = request.form['open_price']
|
87 |
+
high_price = request.form['high_price']
|
88 |
+
low_price = request.form['low_price']
|
89 |
+
close_price = request.form['close_price']
|
90 |
+
adj_close = request.form['adj_close']
|
91 |
+
volume = request.form['volume']
|
92 |
+
|
93 |
+
new_data = [date, open_price, high_price, low_price, close_price, adj_close, volume]
|
94 |
+
|
95 |
+
with open('info.txt', 'a') as file:
|
96 |
+
file.write('\t'.join(new_data) + '\n')
|
97 |
+
|
98 |
+
return render_template('admin.html')
|
99 |
+
################################################################################################################################
|
100 |
+
@app.route('/clear_history')
|
101 |
+
def clear_history():
|
102 |
+
global conversation_history
|
103 |
+
conversation_history = []
|
104 |
+
return 'Conversation history cleared'
|
105 |
+
|
106 |
+
with open('i.txt', 'r') as file:
|
107 |
+
data = file.read()
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
+
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
111 |
+
huggingfacehub_api_token = "hf" + data
|
112 |
+
|
113 |
+
llm = HuggingFaceHub(huggingfacehub_api_token=huggingfacehub_api_token,
|
114 |
+
repo_id=repo_id,
|
115 |
+
model_kwargs={
|
116 |
+
"temperature": 0.5,
|
117 |
+
"max_new_tokens": 512,
|
118 |
+
"top_p": 0.3,
|
119 |
+
"repetition_penalty": 1.2,
|
120 |
+
"num_beams": 3,
|
121 |
+
"length_penalty": 1.5,
|
122 |
+
"no_repeat_ngram_size": 2,
|
123 |
+
"early_stopping": True,
|
124 |
+
"num_return_sequences": 1,
|
125 |
+
"use_cache": True,
|
126 |
+
"task": "predictions",
|
127 |
+
"data_source": "financial_markets",
|
128 |
+
"historical_data_fetch": True,
|
129 |
+
"real-time_data_integration": True,
|
130 |
+
"feature_engineering": ["technical_indicators", "sentiment_analysis", "volume_analysis"],
|
131 |
+
"machine_learning_models": ["LSTM", "Random Forest", "ARIMA", "Gradient Boosting"],
|
132 |
+
"prediction_horizon": "short-term",
|
133 |
+
"evaluation_metrics": ["accuracy", "MSE", "MAE", "RMSE"],
|
134 |
+
"model_fine-tuning": True,
|
135 |
+
"interpretability_explanation": True,
|
136 |
+
"ensemble_methods": ["voting", "stacking"],
|
137 |
+
"hyperparameter_optimization": True,
|
138 |
+
"cross-validation": True,
|
139 |
+
"online_learning": True,
|
140 |
+
}
|
141 |
+
)
|
142 |
app.run(host="0.0.0.0", port=7860)
|