Delete python.txt
Browse files- python.txt +0 -173
python.txt
DELETED
@@ -1,173 +0,0 @@
|
|
1 |
-
from flask import Flask, render_template, request, send_from_directory
|
2 |
-
from datetime import datetime
|
3 |
-
from langchain_community.llms import HuggingFaceHub
|
4 |
-
from langchain.prompts import PromptTemplate
|
5 |
-
import requests
|
6 |
-
import json
|
7 |
-
import nltk
|
8 |
-
from textblob import TextBlob
|
9 |
-
from nltk.tokenize import word_tokenize
|
10 |
-
from nltk.stem import PorterStemmer
|
11 |
-
from nltk.stem import WordNetLemmatizer
|
12 |
-
import tensorflow as tf
|
13 |
-
from tensorflow import keras
|
14 |
-
import spacy
|
15 |
-
from bs4 import BeautifulSoup
|
16 |
-
|
17 |
-
nltk.download('punkt')
|
18 |
-
nltk.download('wordnet')
|
19 |
-
|
20 |
-
def download_spacy_model():
|
21 |
-
import spacy # Import spacy within the function scope
|
22 |
-
try:
|
23 |
-
spacy.load("en_core_web_sm")
|
24 |
-
except OSError:
|
25 |
-
import spacy.cli
|
26 |
-
spacy.cli.download("en_core_web_sm")
|
27 |
-
|
28 |
-
download_spacy_model()
|
29 |
-
|
30 |
-
nlp = spacy.load("en_core_web_sm")
|
31 |
-
|
32 |
-
app = Flask(__name__)
|
33 |
-
with open('python.txt', 'r') as file:
|
34 |
-
Python = file.read()
|
35 |
-
|
36 |
-
# Load the JSON data from the file
|
37 |
-
with open('ai_chatbot_data.json', 'r') as file:
|
38 |
-
json_data = json.load(file)
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
template = "Message: {message}\n\nSentiment Analysis: {sentiment}\n\nConversation Now Between you and user: {history}\n\nDate and Time: {date_time}\n\nBitcoin Price: ${bitcoin_price}\n\nBitcoin history from 1-jan-2024 to today the tidy is date-open-high-low-close-adj close-volum: {database_tag}\n\nYour system: {json_data}.\n\nCreated by this code:{Python}\n\nResponse:"
|
44 |
-
prompt = PromptTemplate(template=template, input_variables=["message", "sentiment", "history", "date_time", "bitcoin_price", "database_tag","Python", "json_data"])
|
45 |
-
conversation_history = []
|
46 |
-
|
47 |
-
MAX_HISTORY_LENGTH = 55
|
48 |
-
|
49 |
-
url = "https://dooratre-info.hf.space/"
|
50 |
-
|
51 |
-
response = requests.get(url)
|
52 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
53 |
-
|
54 |
-
div_content = soup.find('div', {'id': '45'})
|
55 |
-
if div_content:
|
56 |
-
print(div_content)
|
57 |
-
else:
|
58 |
-
print("No div with id=45 found on the page.")
|
59 |
-
database_tag=div_content
|
60 |
-
|
61 |
-
def update_conversation_history(message):
|
62 |
-
if len(conversation_history) >= MAX_HISTORY_LENGTH:
|
63 |
-
conversation_history.pop(0)
|
64 |
-
conversation_history.append(message)
|
65 |
-
|
66 |
-
|
67 |
-
def get_bitcoin_price():
|
68 |
-
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
69 |
-
url = 'https://api.coindesk.com/v1/bpi/currentprice.json'
|
70 |
-
response = requests.get(url)
|
71 |
-
|
72 |
-
if response.status_code == 200:
|
73 |
-
data = response.json()
|
74 |
-
bitcoin_price = data['bpi']['USD']['rate']
|
75 |
-
return bitcoin_price, current_time
|
76 |
-
else:
|
77 |
-
return 'Error fetching data', current_time
|
78 |
-
|
79 |
-
@app.route('/assets/<path:path>')
|
80 |
-
def send_static(path):
|
81 |
-
return send_from_directory('assets', path)
|
82 |
-
|
83 |
-
@app.route('/')
|
84 |
-
def index():
|
85 |
-
global conversation_history
|
86 |
-
return render_template('index.html', conversation=conversation_history)
|
87 |
-
|
88 |
-
@app.route('/submit', methods=['POST'])
|
89 |
-
def submit():
|
90 |
-
user_input = request.json.get('user_input')
|
91 |
-
|
92 |
-
doc = nlp(user_input)
|
93 |
-
tokens = [token.text for token in doc]
|
94 |
-
|
95 |
-
sentiment = TextBlob(user_input).sentiment
|
96 |
-
|
97 |
-
# Add Spacy NLP processing here
|
98 |
-
|
99 |
-
ps = PorterStemmer()
|
100 |
-
stemmed_tokens = [ps.stem(token) for token in tokens]
|
101 |
-
|
102 |
-
lemmatizer = WordNetLemmatizer()
|
103 |
-
lemmatized_tokens = [lemmatizer.lemmatize(token) for token in tokens]
|
104 |
-
|
105 |
-
sentiment = TextBlob(user_input).sentiment
|
106 |
-
|
107 |
-
bitcoin_price, current_time = get_bitcoin_price()
|
108 |
-
|
109 |
-
conversation_history.append("User: " + user_input)
|
110 |
-
|
111 |
-
# NLTK processing for conversation history
|
112 |
-
history_tokens = word_tokenize("<br>".join(conversation_history))
|
113 |
-
history_stemmed_tokens = [ps.stem(token) for token in history_tokens]
|
114 |
-
history_lemmatized_tokens = [lemmatizer.lemmatize(token) for token in history_tokens]
|
115 |
-
|
116 |
-
model_input = prompt.format(message=user_input, sentiment=sentiment, history="<br>".join(conversation_history), database_tag=div_content, date_time=current_time, bitcoin_price=bitcoin_price, json_data=json_data,history_tokens=history_tokens,history_stemmed_tokens=history_stemmed_tokens,history_lemmatized_tokens=history_lemmatized_tokens,Python=Python)
|
117 |
-
|
118 |
-
response = llm(model_input, context="<br>".join(conversation_history))
|
119 |
-
|
120 |
-
bot_response = response.split('Response:')[1].strip()
|
121 |
-
bot_response = bot_response.strip().replace('\n', '<br>')
|
122 |
-
|
123 |
-
# Update the conversation history with bot's response
|
124 |
-
update_conversation_history("You " + bot_response)
|
125 |
-
|
126 |
-
conversation_html = '<br>'.join(conversation_history)
|
127 |
-
|
128 |
-
return bot_response
|
129 |
-
|
130 |
-
@app.route('/clear_history')
|
131 |
-
def clear_history():
|
132 |
-
global conversation_history
|
133 |
-
conversation_history = []
|
134 |
-
return 'Conversation history cleared'
|
135 |
-
|
136 |
-
with open('i.txt', 'r') as file:
|
137 |
-
data = file.read()
|
138 |
-
|
139 |
-
if __name__ == "__main__":
|
140 |
-
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
141 |
-
huggingfacehub_api_token = "hf" + data
|
142 |
-
|
143 |
-
llm = HuggingFaceHub(huggingfacehub_api_token=huggingfacehub_api_token,
|
144 |
-
repo_id=repo_id,
|
145 |
-
model_kwargs={
|
146 |
-
"temperature": 0.1,
|
147 |
-
"max_new_tokens": 1024,
|
148 |
-
"top_p": 0.5,
|
149 |
-
"repetition_penalty": 1.2,
|
150 |
-
"num_beams": 3,
|
151 |
-
"length_penalty": 1.2,
|
152 |
-
"no_repeat_ngram_size": 2,
|
153 |
-
"early_stopping": True,
|
154 |
-
"num_return_sequences": 1,
|
155 |
-
"use_cache": True,
|
156 |
-
"task": "predictions",
|
157 |
-
"data_source": "financial_markets",
|
158 |
-
"historical_data_fetch": True,
|
159 |
-
"real-time_data_integration": True,
|
160 |
-
"feature_engineering": ["technical_indicators", "sentiment_analysis", "volume_analysis"],
|
161 |
-
"machine_learning_models": ["LSTM", "Random Forest", "ARIMA", "Gradient Boosting"],
|
162 |
-
"prediction_horizon": "short-term",
|
163 |
-
"evaluation_metrics": ["accuracy", "MSE", "MAE", "RMSE"],
|
164 |
-
"model_fine-tuning": True,
|
165 |
-
"interpretability_explanation": True,
|
166 |
-
"ensemble_methods": ["voting", "stacking"],
|
167 |
-
"hyperparameter_optimization": True,
|
168 |
-
"cross-validation": True,
|
169 |
-
"online_learning": True,
|
170 |
-
}
|
171 |
-
)
|
172 |
-
|
173 |
-
app.run(host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|