Spaces:
Sleeping
Sleeping
Erick Garcia Espinosa
commited on
Commit
·
179adf5
1
Parent(s):
b009213
improvements
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from PIL import Image
|
|
6 |
from timm import create_model
|
7 |
import matplotlib.pyplot as plt
|
8 |
|
|
|
9 |
class_to_idx = {'Monkeypox': 0, 'Measles': 1, 'Chickenpox': 2, 'Herpes': 3, 'Melanoma': 4}
|
10 |
idx_to_class = {v: k for k, v in class_to_idx.items()}
|
11 |
|
@@ -16,11 +17,8 @@ transform = transforms.Compose([
|
|
16 |
])
|
17 |
|
18 |
# Function to load and preprocess an image
|
19 |
-
def load_image(
|
20 |
-
|
21 |
-
image = Image.open(image).convert('RGB')
|
22 |
-
elif isinstance(image, np.ndarray): # If image is a numpy array
|
23 |
-
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
24 |
image = transform(image).unsqueeze(0) # Add batch dimension
|
25 |
return image
|
26 |
|
@@ -33,12 +31,9 @@ model.load_state_dict(torch.load('ARTmodelo5ns_vit_weights_epoch6.pth', map_loca
|
|
33 |
model.eval()
|
34 |
|
35 |
# Define the prediction function
|
36 |
-
def predict_image(
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
# Load and transform the image
|
41 |
-
img_tensor = load_image(image)
|
42 |
|
43 |
# Perform the prediction
|
44 |
with torch.no_grad():
|
@@ -49,9 +44,6 @@ def predict_image(image):
|
|
49 |
percentages = probabilities * 100
|
50 |
results = {idx_to_class[i]: percentages[i].item() for i in range(len(idx_to_class))}
|
51 |
|
52 |
-
# Get the highest prediction
|
53 |
-
predicted_label = max(results, key=results.get)
|
54 |
-
|
55 |
# Plotting the results
|
56 |
labels = list(results.keys())
|
57 |
values = list(results.values())
|
@@ -65,21 +57,18 @@ def predict_image(image):
|
|
65 |
plt.savefig('result.png')
|
66 |
plt.close(fig)
|
67 |
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
# Create the Gradio interface
|
71 |
iface = gr.Interface(
|
72 |
fn=predict_image,
|
73 |
-
inputs=
|
74 |
-
|
75 |
-
gr.Image(source="webcam", type="pil", tool="editor", label="Take a photo")
|
76 |
-
],
|
77 |
-
outputs=[
|
78 |
-
gr.Textbox(label="Prediction"),
|
79 |
-
gr.Image(label="Prediction Probabilities")
|
80 |
-
],
|
81 |
title="Skin Lesion Image Classification",
|
82 |
-
description="Upload an image of a skin lesion to get a prediction
|
83 |
theme="huggingface",
|
84 |
live=True
|
85 |
)
|
|
|
6 |
from timm import create_model
|
7 |
import matplotlib.pyplot as plt
|
8 |
|
9 |
+
# Class to index and index to class mappings
|
10 |
class_to_idx = {'Monkeypox': 0, 'Measles': 1, 'Chickenpox': 2, 'Herpes': 3, 'Melanoma': 4}
|
11 |
idx_to_class = {v: k for k, v in class_to_idx.items()}
|
12 |
|
|
|
17 |
])
|
18 |
|
19 |
# Function to load and preprocess an image
|
20 |
+
def load_image(image_path):
|
21 |
+
image = Image.open(image_path).convert('RGB')
|
|
|
|
|
|
|
22 |
image = transform(image).unsqueeze(0) # Add batch dimension
|
23 |
return image
|
24 |
|
|
|
31 |
model.eval()
|
32 |
|
33 |
# Define the prediction function
|
34 |
+
def predict_image(image_path):
|
35 |
+
# Load and transform the image from the file path
|
36 |
+
img_tensor = load_image(image_path)
|
|
|
|
|
|
|
37 |
|
38 |
# Perform the prediction
|
39 |
with torch.no_grad():
|
|
|
44 |
percentages = probabilities * 100
|
45 |
results = {idx_to_class[i]: percentages[i].item() for i in range(len(idx_to_class))}
|
46 |
|
|
|
|
|
|
|
47 |
# Plotting the results
|
48 |
labels = list(results.keys())
|
49 |
values = list(results.values())
|
|
|
57 |
plt.savefig('result.png')
|
58 |
plt.close(fig)
|
59 |
|
60 |
+
# Return the top prediction as well
|
61 |
+
top_prediction = max(results, key=results.get)
|
62 |
+
|
63 |
+
return top_prediction, 'result.png'
|
64 |
|
65 |
# Create the Gradio interface
|
66 |
iface = gr.Interface(
|
67 |
fn=predict_image,
|
68 |
+
inputs=gr.Image(type="filepath", label="Upload an image"),
|
69 |
+
outputs=[gr.Textbox(label="Prediction"), gr.Image(label="Prediction Probabilities")],
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
title="Skin Lesion Image Classification",
|
71 |
+
description="Upload an image of a skin lesion to get a prediction. This tool helps to classify images of skin lesions into the following categories: Measles, Chickenpox, Herpes, Melanomas, and Monkeypox. Check out the dataset and paper at: [Link to Example 1](#), [Link to Example 2](#)",
|
72 |
theme="huggingface",
|
73 |
live=True
|
74 |
)
|