Spaces:
Sleeping
Sleeping
Erick Garcia Espinosa
commited on
Commit
·
4d70acc
1
Parent(s):
7b4760b
improvements
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from PIL import Image
|
|
6 |
from timm import create_model
|
7 |
import matplotlib.pyplot as plt
|
8 |
|
9 |
-
# Class to index and index to class mappings
|
10 |
class_to_idx = {'Monkeypox': 0, 'Measles': 1, 'Chickenpox': 2, 'Herpes': 3, 'Melanoma': 4}
|
11 |
idx_to_class = {v: k for k, v in class_to_idx.items()}
|
12 |
|
@@ -31,9 +30,16 @@ model.load_state_dict(torch.load('ARTmodelo5ns_vit_weights_epoch6.pth', map_loca
|
|
31 |
model.eval()
|
32 |
|
33 |
# Define the prediction function
|
34 |
-
def predict_image(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Load and transform the image from the file path
|
36 |
-
img_tensor =
|
37 |
|
38 |
# Perform the prediction
|
39 |
with torch.no_grad():
|
@@ -44,6 +50,9 @@ def predict_image(image_path):
|
|
44 |
percentages = probabilities * 100
|
45 |
results = {idx_to_class[i]: percentages[i].item() for i in range(len(idx_to_class))}
|
46 |
|
|
|
|
|
|
|
47 |
# Plotting the results
|
48 |
labels = list(results.keys())
|
49 |
values = list(results.values())
|
@@ -57,18 +66,21 @@ def predict_image(image_path):
|
|
57 |
plt.savefig('result.png')
|
58 |
plt.close(fig)
|
59 |
|
60 |
-
|
61 |
-
top_prediction = max(results, key=results.get)
|
62 |
-
|
63 |
-
return top_prediction, 'result.png'
|
64 |
|
65 |
# Create the Gradio interface
|
66 |
iface = gr.Interface(
|
67 |
fn=predict_image,
|
68 |
-
inputs=
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
title="Skin Lesion Image Classification",
|
71 |
-
description="Upload an image of a skin lesion to get a prediction. This
|
72 |
theme="huggingface",
|
73 |
live=True
|
74 |
)
|
|
|
6 |
from timm import create_model
|
7 |
import matplotlib.pyplot as plt
|
8 |
|
|
|
9 |
class_to_idx = {'Monkeypox': 0, 'Measles': 1, 'Chickenpox': 2, 'Herpes': 3, 'Melanoma': 4}
|
10 |
idx_to_class = {v: k for k, v in class_to_idx.items()}
|
11 |
|
|
|
30 |
model.eval()
|
31 |
|
32 |
# Define the prediction function
|
33 |
+
def predict_image(image):
|
34 |
+
if image is None:
|
35 |
+
return "No image provided", None
|
36 |
+
|
37 |
+
# Convert the image to PIL if it's not a filepath
|
38 |
+
if isinstance(image, np.ndarray):
|
39 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
40 |
+
|
41 |
# Load and transform the image from the file path
|
42 |
+
img_tensor = transform(image).unsqueeze(0)
|
43 |
|
44 |
# Perform the prediction
|
45 |
with torch.no_grad():
|
|
|
50 |
percentages = probabilities * 100
|
51 |
results = {idx_to_class[i]: percentages[i].item() for i in range(len(idx_to_class))}
|
52 |
|
53 |
+
# Get the highest prediction
|
54 |
+
predicted_label = max(results, key=results.get)
|
55 |
+
|
56 |
# Plotting the results
|
57 |
labels = list(results.keys())
|
58 |
values = list(results.values())
|
|
|
66 |
plt.savefig('result.png')
|
67 |
plt.close(fig)
|
68 |
|
69 |
+
return predicted_label, 'result.png'
|
|
|
|
|
|
|
70 |
|
71 |
# Create the Gradio interface
|
72 |
iface = gr.Interface(
|
73 |
fn=predict_image,
|
74 |
+
inputs=[
|
75 |
+
gr.Image(source="upload", type="pil", tool="editor", label="Upload an image or take a photo"),
|
76 |
+
gr.Image(source="webcam", type="pil", tool="editor", label="Take a photo")
|
77 |
+
],
|
78 |
+
outputs=[
|
79 |
+
gr.Textbox(label="Prediction"),
|
80 |
+
gr.Image(label="Prediction Probabilities")
|
81 |
+
],
|
82 |
title="Skin Lesion Image Classification",
|
83 |
+
description="Upload an image of a skin lesion to get a prediction with confidence percentages. This model can classify images of skin lesions into one of the following categories: Measles, Chickenpox, Herpes, Melanoma, and Monkeypox. Check out the dataset and paper at: [Link to Dataset](#), [Link to Paper](#)",
|
84 |
theme="huggingface",
|
85 |
live=True
|
86 |
)
|