# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .integrations import (
    is_optuna_available,
    is_ray_available,
    is_sigopt_available,
    is_wandb_available,
    run_hp_search_optuna,
    run_hp_search_ray,
    run_hp_search_sigopt,
    run_hp_search_wandb,
)
from .trainer_utils import (
    HPSearchBackend,
    default_hp_space_optuna,
    default_hp_space_ray,
    default_hp_space_sigopt,
    default_hp_space_wandb,
)
from .utils import logging


logger = logging.get_logger(__name__)


class HyperParamSearchBackendBase:
    name: str
    pip_package: str = None

    @staticmethod
    def is_available():
        raise NotImplementedError

    def run(self, trainer, n_trials: int, direction: str, **kwargs):
        raise NotImplementedError

    def default_hp_space(self, trial):
        raise NotImplementedError

    def ensure_available(self):
        if not self.is_available():
            raise RuntimeError(
                f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}."
            )

    @classmethod
    def pip_install(cls):
        return f"`pip install {cls.pip_package or cls.name}`"


class OptunaBackend(HyperParamSearchBackendBase):
    name = "optuna"

    @staticmethod
    def is_available():
        return is_optuna_available()

    def run(self, trainer, n_trials: int, direction: str, **kwargs):
        return run_hp_search_optuna(trainer, n_trials, direction, **kwargs)

    def default_hp_space(self, trial):
        return default_hp_space_optuna(trial)


class RayTuneBackend(HyperParamSearchBackendBase):
    name = "ray"
    pip_package = "'ray[tune]'"

    @staticmethod
    def is_available():
        return is_ray_available()

    def run(self, trainer, n_trials: int, direction: str, **kwargs):
        return run_hp_search_ray(trainer, n_trials, direction, **kwargs)

    def default_hp_space(self, trial):
        return default_hp_space_ray(trial)


class SigOptBackend(HyperParamSearchBackendBase):
    name = "sigopt"

    @staticmethod
    def is_available():
        return is_sigopt_available()

    def run(self, trainer, n_trials: int, direction: str, **kwargs):
        return run_hp_search_sigopt(trainer, n_trials, direction, **kwargs)

    def default_hp_space(self, trial):
        return default_hp_space_sigopt(trial)


class WandbBackend(HyperParamSearchBackendBase):
    name = "wandb"

    @staticmethod
    def is_available():
        return is_wandb_available()

    def run(self, trainer, n_trials: int, direction: str, **kwargs):
        return run_hp_search_wandb(trainer, n_trials, direction, **kwargs)

    def default_hp_space(self, trial):
        return default_hp_space_wandb(trial)


ALL_HYPERPARAMETER_SEARCH_BACKENDS = {
    HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}


def default_hp_search_backend() -> str:
    available_backends = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
    if len(available_backends) > 0:
        name = available_backends[0].name
        if len(available_backends) > 1:
            logger.info(
                f"{len(available_backends)} hyperparameter search backends available. Using {name} as the default."
            )
        return name
    raise RuntimeError(
        "No hyperparameter search backend available.\n"
        + "\n".join(
            f" - To install {backend.name} run {backend.pip_install()}"
            for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()
        )
    )