File size: 3,041 Bytes
2bc3020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModel
import dask.dataframe as dd
from datasets import load_dataset
import torch

# Load models and tokenizer
def load_models():
    # Load model 1
    model_1 = AutoModel.from_pretrained("Canstralian/RedTeamAI")
    
    # Load model 2
    model_2 = AutoModel.from_pretrained("mradermacher/BashCopilot-6B-preview-GGUF")
    
    # Load tokenizer and sequence classification model
    tokenizer = AutoTokenizer.from_pretrained("bash1130/bert-base-finetuned-ynat")
    model_3 = AutoModelForSequenceClassification.from_pretrained("bash1130/bert-base-finetuned-ynat")
    
    return model_1, model_2, tokenizer, model_3

# Load dataset using Dask
def load_data():
    # Example of loading a dataset using Dask (adjust paths as necessary)
    splits = {'creative_content': 'data/creative_content-00000-of-00001.parquet'}
    df = dd.read_parquet("hf://datasets/microsoft/orca-agentinstruct-1M-v1/" + splits["creative_content"])
    return df.head()

# Function for model inference
def infer_model(input_text, model_type):
    # Choose the model based on the input (you can add more models or conditions as needed)
    if model_type == 'RedTeamAI':
        model = models[0]
    elif model_type == 'BashCopilot':
        model = models[1]
    elif model_type == 'BertModel':
        model = models[3]
        inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
        outputs = model(**inputs)
        return outputs.logits.argmax(dim=-1).item()
    else:
        return "Model type not recognized."
    
    # If you need to generate outputs based on the models directly, you can use:
    # outputs = model.generate(input_text) or other inference methods depending on the model.
    return f"Model {model_type} inference not implemented yet."

# Gradio Interface setup
def build_interface():
    # Load models and data
    model_1, model_2, tokenizer, model_3 = load_models()
    global models
    models = [model_1, model_2, tokenizer, model_3]
    
    # Load the dataset (example function, you can add more functionality)
    data_preview = load_data()
    
    print(f"Dataset preview: {data_preview}")
    
    # Create Gradio interface
    with gr.Blocks() as demo:
        gr.Markdown("# Chagrin AI - Model Inference & Dataset Explorer")
        
        # Model selection dropdown
        model_type = gr.Dropdown(choices=["RedTeamAI", "BashCopilot", "BertModel"], label="Choose Model")
        
        # Textbox for user input
        input_text = gr.Textbox(label="Enter your input text")
        
        # Button to trigger inference
        result = gr.Textbox(label="Inference Result")
        
        submit_btn = gr.Button("Run Inference")
        submit_btn.click(infer_model, inputs=[input_text, model_type], outputs=result)
    
    demo.launch()

# Run the app
if __name__ == "__main__":
    build_interface()