Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,133 Bytes
df13f4b b20f9b9 df13f4b 58423c5 b20f9b9 1f198ea 20f5dc1 df13f4b f29f494 df13f4b 58423c5 df13f4b f29f494 06a530c 58423c5 7ccdbd8 1f198ea 7ccdbd8 1f198ea 29dd4d7 58423c5 9681ac8 5cca3bb 9681ac8 579479d 7ccdbd8 df13f4b 58423c5 df13f4b 58423c5 1f198ea df13f4b 061726b df13f4b 58423c5 e308b99 58423c5 df13f4b 58423c5 0f4ab2b 58423c5 1f198ea 58423c5 0f4ab2b 58423c5 df13f4b 7ccdbd8 58423c5 0f4ab2b df13f4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
import torch
import sys
import spaces #fixme
import random
import gradio as gr
import random
from configs.infer_config import get_parser
from huggingface_hub import hf_hub_download
traj_examples = [
['0 40', '0 0', '0 0'],
['0 -35', '0 0', '0 -0.1'],
['0 -3 -15 -20 -17 -5 0', '0 -2 -5 -10 -8 -5 0 2 5 3 0', '0 0'],
['0 3 10 20 17 10 0', '0 -2 -8 -6 0 2 5 3 0', '0 -0.02 -0.09 -0.16 -0.09 0'],
['0 30', '0 -1 -5 -4 0 1 5 4 0', '0 -0.2'],
]
img_examples = [
['test/images/boy.png',0,1],
['test/images/car.jpeg',5,1],
['test/images/fruit.jpg',5,1],
['test/images/room.png',10,1],
['test/images/castle.png',-4,1],
]
max_seed = 2 ** 31
def download_model():
REPO_ID = 'Drexubery/ViewCrafter_25'
filename_list = ['model.ckpt']
for filename in filename_list:
local_file = os.path.join('./checkpoints/', filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/', force_download=True)
download_model() #fixme
parser = get_parser() # infer_config.py
opts = parser.parse_args() # default device: 'cuda:0'
tmp = str(random.randint(10**(5-1), 10**5 - 1))
opts.save_dir = f'./{tmp}'
os.makedirs(opts.save_dir,exist_ok=True)
test_tensor = torch.Tensor([0]).cuda()
opts.device = str(test_tensor.device)
opts.config = './configs/inference_pvd_1024_gradio.yaml' #fixme
# opts.config = './configs/inference_pvd_1024_local.yaml' #fixme
# install pytorch3d # fixme
pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
version_str="".join([
f"py3{sys.version_info.minor}_cu",
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
print(version_str)
os.system(f"{sys.executable} -m pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html")
os.system("mkdir -p checkpoints/ && wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P checkpoints/")
print(f'>>> System info: {version_str}')
from viewcrafter import ViewCrafter
def viewcrafter_demo(opts):
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height:576px} #random_button {max-width: 100px !important}"""
image2video = ViewCrafter(opts, gradio = True)
image2video.run_traj = spaces.GPU(image2video.run_traj, duration=50) # fixme
image2video.run_gen = spaces.GPU(image2video.run_gen, duration=260) # fixme
with gr.Blocks(analytics_enabled=False, css=css) as viewcrafter_iface:
gr.Markdown("<div align='center'> <h1> ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis </span> </h1> \
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
<a href='https://scholar.google.com/citations?user=UOE8-qsAAAAJ&hl=zh-CN'>Wangbo Yu</a>, \
<a href='https://doubiiu.github.io/'>Jinbo Xing</a>, <a href=''>Li Yuan</a>, \
<a href='https://wbhu.github.io/'>Wenbo Hu</a>, <a href='https://xiaoyu258.github.io/'>Xiaoyu Li</a>,\
<a href=''>Zhipeng Huang</a>, <a href='https://scholar.google.com/citations?user=qgdesEcAAAAJ&hl=en/'>Xiangjun Gao</a>,\
<a href='https://www.cse.cuhk.edu.hk/~ttwong/myself.html/'>Tien-Tsin Wong</a>,\
<a href='https://scholar.google.com/citations?hl=en&user=4oXBp9UAAAAJ&view_op=list_works&sortby=pubdate/'>Ying Shan</a>\
<a href=''>Yonghong Tian</a>\
</h2> \
<a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2409.02048'> [ArXiv] </a>\
<a style='font-size:18px;color: #000000' href='https://drexubery.github.io/ViewCrafter/'> [Project Page] </a>\
<a style='font-size:18px;color: #FF5DB0' href='https://github.com/Drexubery/ViewCrafter'> [Github] </a>\
<a style='font-size:18px;color: #000000' href='https://www.youtube.com/watch?v=WGIEmu9eXmU'> [Video] </a> </div>")
with gr.Column():
# step 0: tutorial
gr.Markdown("## Step 0: Read tutorial", show_label=False)
gr.Markdown("<div align='left' style='font-size:18px;color: #000000'>Please refer to the tutorial <a href='https://github.com/Drexubery/ViewCrafter/blob/main/docs/gradio_tutorial.md' target='_blank'>here</a> for best practice, which includes the cameara system defination and the renderer parameters.</div>")
# step 2: input an image
gr.Markdown("---\n## Step 1: Input an Image, selet an elevation angle and a center_scale factor", show_label=False, visible=True)
gr.Markdown("<div align='left' style='font-size:18px;color: #000000'>1. Estimate an elevation angle that represents the angle at which the image was taken; a value bigger than 0 indicates a top-down view, and it doesn't need to be precise. <br>2. The origin of the world coordinate system is by default defined at the point cloud corresponding to the center pixel of the input image. You can adjust the position of the origin by modifying center_scale; a value smaller than 1 brings the origin closer to you.</div>")
with gr.Row(equal_height=True):
with gr.Column(scale=2):
with gr.Row():
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
with gr.Row():
i2v_elevation = gr.Slider(minimum=-45, maximum=45, step=1, elem_id="elevation", label="elevation", value=5)
i2v_center_scale = gr.Slider(minimum=0.1, maximum=2, step=0.1, elem_id="i2v_center_scale", label="center_scale", value=1)
gr.Examples(examples=img_examples,
inputs=[i2v_input_image,i2v_elevation,i2v_center_scale],
examples_per_page=6
)
# step 2 - camera trajectory generation
gr.Markdown("---\n## Step 2: Input camera trajectory", show_label=False, visible=True)
gr.Markdown("<div align='left' style='font-size:18px;color: #000000'> Input a d_phi sequence, a d_theta sequence, and a d_r sequence to generate a camera trajectory. In the sequences, a positive d_phi moves the camera to the right, a negative d_theta moves the camera up, and a negative d_r moves the camera forward. Ensure that each sequence starts with 0 and contains at least two elements (a start and an end). If you upload a new image, remember to conduct this step again. </div>")
with gr.Row():
with gr.Column():
# camera_mode = gr.Radio(choices=CAMERA_MOTION_MODE, value=CAMERA_MOTION_MODE[0], label="Camera Motion Control Mode", interactive=True, visible=False)
i2v_d_phi = gr.Text(label='d_phi sequence')
i2v_d_theta = gr.Text(label='d_theta sequence')
i2v_d_r = gr.Text(label='d_r sequence')
i2v_start_btn = gr.Button("Generate trajectory")
# camera_info = gr.Button(value="Proceed", visible=False)
with gr.Column():
i2v_traj_video = gr.Video(label="Camera Trajectory",elem_id="traj_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=traj_examples,
inputs=[i2v_d_phi, i2v_d_theta, i2v_d_r],
)
# step 3 - Generate video
gr.Markdown("---\n## Step 3: Generate video", show_label=False, visible=True)
gr.Markdown("<div align='left' style='font-size:18px;color: #000000'> You can reduce the sampling steps for faster inference; try different random seed if the result is not satisfying. </div>")
with gr.Row():
with gr.Column():
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
i2v_seed = gr.Slider(label='Random seed', minimum=0, maximum=max_seed, step=1, value=0)
i2v_end_btn = gr.Button("Generate video")
# with gr.Tab(label='Result'):
with gr.Column():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
i2v_start_btn.click(inputs=[i2v_input_image, i2v_elevation, i2v_center_scale, i2v_d_phi, i2v_d_theta, i2v_d_r],
outputs=[i2v_traj_video],
fn = image2video.run_traj
)
i2v_end_btn.click(inputs=[i2v_steps, i2v_seed],
outputs=[i2v_output_video],
fn = image2video.run_gen
)
return viewcrafter_iface
viewcrafter_iface = viewcrafter_demo(opts)
viewcrafter_iface.queue(max_size=10)
viewcrafter_iface.launch() #fixme
# viewcrafter_iface.launch(server_name='11.220.92.96', server_port=80, max_threads=10,debug=False)
|