File size: 9,133 Bytes
df13f4b
b20f9b9
df13f4b
58423c5
b20f9b9
1f198ea
20f5dc1
df13f4b
 
f29f494
df13f4b
58423c5
 
 
 
 
 
 
 
 
 
 
 
 
 
df13f4b
 
 
 
f29f494
 
 
 
 
 
 
06a530c
58423c5
7ccdbd8
 
1f198ea
 
7ccdbd8
 
 
1f198ea
 
29dd4d7
58423c5
9681ac8
 
 
 
 
 
 
 
5cca3bb
9681ac8
 
579479d
7ccdbd8
df13f4b
58423c5
df13f4b
 
 
58423c5
1f198ea
df13f4b
 
 
 
 
 
 
 
 
 
 
061726b
df13f4b
58423c5
 
 
 
 
 
 
e308b99
58423c5
 
 
 
 
 
 
 
 
 
 
 
 
 
df13f4b
58423c5
 
0f4ab2b
58423c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f198ea
58423c5
 
 
 
 
 
 
 
 
 
0f4ab2b
58423c5
 
 
 
 
df13f4b
 
 
 
7ccdbd8
 
58423c5
0f4ab2b
df13f4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import torch
import sys
import spaces #fixme

import random
import gradio as gr
import random
from configs.infer_config import get_parser
from huggingface_hub import hf_hub_download

traj_examples = [
    ['0 40', '0 0', '0 0'],
    ['0 -35', '0 0', '0 -0.1'],
    ['0 -3 -15 -20 -17 -5 0', '0 -2 -5 -10 -8 -5 0 2 5 3 0', '0 0'],
    ['0 3 10 20 17 10 0', '0 -2 -8 -6 0 2 5 3 0', '0 -0.02 -0.09 -0.16 -0.09 0'],
    ['0 30', '0 -1 -5 -4 0 1 5 4 0', '0 -0.2'],
]

img_examples = [
    ['test/images/boy.png',0,1],
    ['test/images/car.jpeg',5,1],
    ['test/images/fruit.jpg',5,1],
    ['test/images/room.png',10,1],
    ['test/images/castle.png',-4,1],
]

max_seed = 2 ** 31

def download_model():
    REPO_ID = 'Drexubery/ViewCrafter_25'
    filename_list = ['model.ckpt']
    for filename in filename_list:
        local_file = os.path.join('./checkpoints/', filename)
        if not os.path.exists(local_file):
            hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/', force_download=True)
    
download_model() #fixme
parser = get_parser() # infer_config.py
opts = parser.parse_args() # default device: 'cuda:0'
tmp = str(random.randint(10**(5-1), 10**5 - 1))
opts.save_dir = f'./{tmp}'
os.makedirs(opts.save_dir,exist_ok=True)
test_tensor = torch.Tensor([0]).cuda()
opts.device = str(test_tensor.device)
opts.config = './configs/inference_pvd_1024_gradio.yaml' #fixme
# opts.config = './configs/inference_pvd_1024_local.yaml' #fixme

# install pytorch3d # fixme
pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
version_str="".join([
    f"py3{sys.version_info.minor}_cu",
    torch.version.cuda.replace(".",""),
    f"_pyt{pyt_version_str}"
])
print(version_str)
os.system(f"{sys.executable} -m pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html")
os.system("mkdir -p checkpoints/ && wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P checkpoints/")
print(f'>>> System info: {version_str}')


from viewcrafter import ViewCrafter


def viewcrafter_demo(opts):
    css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height:576px} #random_button {max-width: 100px !important}"""
    image2video = ViewCrafter(opts, gradio = True)
    image2video.run_traj = spaces.GPU(image2video.run_traj, duration=50) # fixme
    image2video.run_gen = spaces.GPU(image2video.run_gen, duration=260) # fixme
    with gr.Blocks(analytics_enabled=False, css=css) as viewcrafter_iface:
        gr.Markdown("<div align='center'> <h1> ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis </span> </h1> \
                      <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
                        <a href='https://scholar.google.com/citations?user=UOE8-qsAAAAJ&hl=zh-CN'>Wangbo Yu</a>, \
                        <a href='https://doubiiu.github.io/'>Jinbo Xing</a>, <a href=''>Li Yuan</a>, \
                        <a href='https://wbhu.github.io/'>Wenbo Hu</a>, <a href='https://xiaoyu258.github.io/'>Xiaoyu Li</a>,\
                        <a href=''>Zhipeng Huang</a>, <a href='https://scholar.google.com/citations?user=qgdesEcAAAAJ&hl=en/'>Xiangjun Gao</a>,\
                        <a href='https://www.cse.cuhk.edu.hk/~ttwong/myself.html/'>Tien-Tsin Wong</a>,\
                        <a href='https://scholar.google.com/citations?hl=en&user=4oXBp9UAAAAJ&view_op=list_works&sortby=pubdate/'>Ying Shan</a>\
                        <a href=''>Yonghong Tian</a>\
                    </h2> \
                     <a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2409.02048'> [ArXiv] </a>\
                     <a style='font-size:18px;color: #000000' href='https://drexubery.github.io/ViewCrafter/'> [Project Page] </a>\
                     <a style='font-size:18px;color: #FF5DB0' href='https://github.com/Drexubery/ViewCrafter'> [Github] </a>\
                     <a style='font-size:18px;color: #000000' href='https://www.youtube.com/watch?v=WGIEmu9eXmU'> [Video] </a> </div>")


        with gr.Column():
            # step 0: tutorial
            gr.Markdown("## Step 0: Read tutorial", show_label=False)
            gr.Markdown("<div align='left' style='font-size:18px;color: #000000'>Please refer to the tutorial <a href='https://github.com/Drexubery/ViewCrafter/blob/main/docs/gradio_tutorial.md' target='_blank'>here</a> for best practice, which includes the cameara system defination and the renderer parameters.</div>")

            # step 2: input an image
            gr.Markdown("---\n## Step 1: Input an Image, selet an elevation angle and a center_scale factor", show_label=False, visible=True)
            gr.Markdown("<div align='left' style='font-size:18px;color: #000000'>1. Estimate an elevation angle  that represents the angle at which the image was taken; a value bigger than 0 indicates a top-down view, and it doesn't need to be precise. <br>2. The origin of the world coordinate system is by default defined at the point cloud corresponding to the center pixel of the input image. You can adjust the position of the origin by modifying center_scale; a value smaller than 1 brings the origin closer to you.</div>")
            with gr.Row(equal_height=True):
                with gr.Column(scale=2):
                    with gr.Row():
                        i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
                    with gr.Row():
                        i2v_elevation = gr.Slider(minimum=-45, maximum=45, step=1, elem_id="elevation", label="elevation", value=5)
                        i2v_center_scale = gr.Slider(minimum=0.1, maximum=2, step=0.1, elem_id="i2v_center_scale", label="center_scale", value=1)
            gr.Examples(examples=img_examples,
                        inputs=[i2v_input_image,i2v_elevation,i2v_center_scale],
                        examples_per_page=6
            )
            # step 2 - camera trajectory generation
            gr.Markdown("---\n## Step 2: Input camera trajectory", show_label=False, visible=True)
            gr.Markdown("<div align='left' style='font-size:18px;color: #000000'> Input a d_phi sequence, a d_theta sequence, and a d_r sequence to generate a camera trajectory. In the sequences, a positive d_phi moves the camera to the right, a negative d_theta moves the camera up, and a negative d_r moves the camera forward. Ensure that each sequence starts with 0 and contains at least two elements (a start and an end). If you upload a new image, remember to conduct this step again. </div>")
            with gr.Row():
                with gr.Column():
                    # camera_mode = gr.Radio(choices=CAMERA_MOTION_MODE, value=CAMERA_MOTION_MODE[0], label="Camera Motion Control Mode", interactive=True, visible=False)
                    i2v_d_phi = gr.Text(label='d_phi sequence')
                    i2v_d_theta = gr.Text(label='d_theta sequence')
                    i2v_d_r = gr.Text(label='d_r sequence')
                    i2v_start_btn = gr.Button("Generate trajectory")
                    # camera_info = gr.Button(value="Proceed", visible=False)      
                with gr.Column():
                    i2v_traj_video = gr.Video(label="Camera Trajectory",elem_id="traj_vid",autoplay=True,show_share_button=True)          
            gr.Examples(examples=traj_examples,
                        inputs=[i2v_d_phi, i2v_d_theta, i2v_d_r],
            )

            # step 3 - Generate video
            gr.Markdown("---\n## Step 3: Generate video", show_label=False, visible=True)
            gr.Markdown("<div align='left' style='font-size:18px;color: #000000'> You can reduce the sampling steps for faster inference; try different random seed if the result is not satisfying. </div>")
            with gr.Row():
                with gr.Column():
                    i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
                    i2v_seed = gr.Slider(label='Random seed', minimum=0, maximum=max_seed, step=1, value=0)
                    i2v_end_btn = gr.Button("Generate video")
                    # with gr.Tab(label='Result'):
                with gr.Column():
                    i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)



        i2v_start_btn.click(inputs=[i2v_input_image, i2v_elevation, i2v_center_scale, i2v_d_phi, i2v_d_theta, i2v_d_r],
                        outputs=[i2v_traj_video],
                        fn = image2video.run_traj
        )
        
        i2v_end_btn.click(inputs=[i2v_steps, i2v_seed],
                        outputs=[i2v_output_video],
                        fn = image2video.run_gen
        )

    return viewcrafter_iface


viewcrafter_iface = viewcrafter_demo(opts)
viewcrafter_iface.queue(max_size=10)
viewcrafter_iface.launch() #fixme
# viewcrafter_iface.launch(server_name='11.220.92.96', server_port=80, max_threads=10,debug=False)