geepytee commited on
Commit
912acb0
·
1 Parent(s): f126a41

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +137 -1
app.py CHANGED
@@ -1,3 +1,139 @@
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- gr.load("models/deepseek-ai/deepseek-coder-33b-instruct").launch()
 
 
1
+ import os
2
+
3
+ from threading import Thread
4
+ from typing import Iterator
5
+
6
  import gradio as gr
7
+ import spaces
8
+ import torch
9
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
10
+
11
+ MAX_MAX_NEW_TOKENS = 2048
12
+ DEFAULT_MAX_NEW_TOKENS = 1024
13
+ total_count=0
14
+ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
15
+
16
+ DESCRIPTION = """\
17
+ # DeepSeek-33B-Chat
18
+
19
+ This space demonstrates model [DeepSeek-Coder](https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct) by DeepSeek, a code model with 33B parameters fine-tuned for chat instructions.
20
+
21
+ **You can also try our 33B model in [official homepage](https://coder.deepseek.com/chat).**
22
+ """
23
+
24
+ if not torch.cuda.is_available():
25
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
26
+
27
+
28
+ if torch.cuda.is_available():
29
+ model_id = "deepseek-ai/deepseek-coder-33b-instruct"
30
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
31
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
32
+ tokenizer.use_default_system_prompt = False
33
+
34
+
35
+
36
+ @spaces.GPU
37
+ def generate(
38
+ message: str,
39
+ chat_history: list[tuple[str, str]],
40
+ system_prompt: str,
41
+ max_new_tokens: int = 1024,
42
+ temperature: float = 0.6,
43
+ top_p: float = 0.9,
44
+ top_k: int = 50,
45
+ repetition_penalty: float = 1,
46
+ ) -> Iterator[str]:
47
+ global total_count
48
+ total_count += 1
49
+ print(total_count)
50
+ os.system("nvidia-smi")
51
+ conversation = []
52
+ if system_prompt:
53
+ conversation.append({"role": "system", "content": system_prompt})
54
+ for user, assistant in chat_history:
55
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
56
+ conversation.append({"role": "user", "content": message})
57
+
58
+ input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
59
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
60
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
61
+ gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
62
+ input_ids = input_ids.to(model.device)
63
+
64
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
65
+ generate_kwargs = dict(
66
+ {"input_ids": input_ids},
67
+ streamer=streamer,
68
+ max_new_tokens=max_new_tokens,
69
+ do_sample=False,
70
+ top_p=top_p,
71
+ top_k=top_k,
72
+ num_beams=1,
73
+ temperature=temperature,
74
+ repetition_penalty=repetition_penalty,
75
+ eos_token_id=32021
76
+ )
77
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
78
+ t.start()
79
+
80
+ outputs = []
81
+ for text in streamer:
82
+ outputs.append(text)
83
+ yield "".join(outputs).replace("<|EOT|>","")
84
+
85
+
86
+ chat_interface = gr.ChatInterface(
87
+ fn=generate,
88
+ additional_inputs=[
89
+ gr.Textbox(label="System prompt", lines=6),
90
+ gr.Slider(
91
+ label="Max new tokens",
92
+ minimum=1,
93
+ maximum=MAX_MAX_NEW_TOKENS,
94
+ step=1,
95
+ value=DEFAULT_MAX_NEW_TOKENS,
96
+ ),
97
+ gr.Slider(
98
+ label="Temperature",
99
+ minimum=0,
100
+ maximum=4.0,
101
+ step=0.1,
102
+ value=0,
103
+ ),
104
+ gr.Slider(
105
+ label="Top-p (nucleus sampling)",
106
+ minimum=0.05,
107
+ maximum=1.0,
108
+ step=0.05,
109
+ value=0.9,
110
+ ),
111
+ gr.Slider(
112
+ label="Top-k",
113
+ minimum=1,
114
+ maximum=1000,
115
+ step=1,
116
+ value=50,
117
+ ),
118
+ gr.Slider(
119
+ label="Repetition penalty",
120
+ minimum=1.0,
121
+ maximum=2.0,
122
+ step=0.05,
123
+ value=1,
124
+ ),
125
+ ],
126
+ stop_btn=gr.Button("Stop"),
127
+ examples=[
128
+ ["implement snake game using pygame"],
129
+ ["Can you explain briefly to me what is the Python programming language?"],
130
+ ["write a program to find the factorial of a number"],
131
+ ],
132
+ )
133
+
134
+ with gr.Blocks(css="style.css") as demo:
135
+ gr.Markdown(DESCRIPTION)
136
+ chat_interface.render()
137
 
138
+ if __name__ == "__main__":
139
+ demo.queue(max_size=20).launch()