Doubleupai commited on
Commit
aaa0bc6
·
verified ·
1 Parent(s): b978026

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -0
app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Install required libraries if not already installed
2
+ # !pip install gradio opencv-python torch torchvision
3
+
4
+ import gradio as gr
5
+ import cv2
6
+ import torch
7
+ from torchvision import models, transforms
8
+ from PIL import Image
9
+
10
+ # Load the pre-trained Faster R-CNN model
11
+ model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
12
+ model.eval()
13
+
14
+ # Define the transformation for the input image
15
+ transform = transforms.Compose([
16
+ transforms.ToTensor()
17
+ ])
18
+
19
+ # Function to perform object detection
20
+ def detect_objects(input_image):
21
+ # Convert the Gradio image to PIL Image
22
+ image_pil = Image.fromarray(input_image.astype('uint8'), 'RGB')
23
+
24
+ # Apply transformations
25
+ image = transform(image_pil)
26
+ image = image.unsqueeze(0) # Add batch dimension
27
+
28
+ # Get predictions
29
+ with torch.no_grad():
30
+ predictions = model(image)
31
+
32
+ # Process predictions
33
+ boxes = predictions[0]['boxes'].detach().numpy()
34
+ labels = predictions[0]['labels'].detach().numpy()
35
+ scores = predictions[0]['scores'].detach().numpy()
36
+
37
+ # Convert PIL Image to OpenCV format
38
+ image_cv = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
39
+
40
+ # Draw bounding boxes on the image
41
+ for box, label, score in zip(boxes, labels, scores):
42
+ if score < 0.5:
43
+ continue # Skip detections with low confidence
44
+ x1, y1, x2, y2 = box.astype(int)
45
+ cv2.rectangle(image_cv, (x1, y1), (x2, y2), (0, 255, 0), 2)
46
+ cv2.putText(image_cv, f'{label}: {score:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
47
+
48
+ # Convert back to RGB for Gradio
49
+ image_rgb = cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB)
50
+ return image_rgb
51
+
52
+ # Create the Gradio interface
53
+ app = gr.Interface(
54
+ fn=detect_objects,
55
+ inputs="image",
56
+ outputs="image",
57
+ title="Object Detection using Faster R-CNN",
58
+ description="Upload an image and the model will detect objects and draw bounding boxes around them."
59
+ )
60
+
61
+ # Launch the app
62
+ app.launch()