import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "sambanovasystems/SambaNova-Qwen2.5-Coder-Artifacts" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_text(prompt): # Generate text using the model inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(inputs, max_length=100, num_return_sequences=1) text = tokenizer.decode(outputs[0], skip_special_tokens=True) return text # Build the Gradio interface with gr.Blocks() as demo: gr.Markdown("