File size: 3,872 Bytes
15d3a65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""
E2E tests for lora llama
"""

import logging
import os
import tempfile
import unittest
from pathlib import Path

from transformers.utils import is_torch_bf16_gpu_available

from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault

LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"


class TestFusedLlama(unittest.TestCase):
    """
    Test case for Llama models using Fused layers
    """

    def test_lora_packing(self):
        # pylint: disable=duplicate-code
        output_dir = tempfile.mkdtemp()
        cfg = DictDefault(
            {
                "base_model": "JackFram/llama-68m",
                "base_model_config": "JackFram/llama-68m",
                "flash_attention": True,
                "flash_attn_fuse_qkv": True,
                "flash_attn_fuse_mlp": True,
                "sample_packing": True,
                "sequence_len": 1024,
                "load_in_8bit": True,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<unk>",
                    "bos_token": "<s>",
                    "eos_token": "</s>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "num_epochs": 2,
                "micro_batch_size": 2,
                "gradient_accumulation_steps": 1,
                "output_dir": output_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_torch",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "save_steps": 10,
                "eval_steps": 10,
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(output_dir) / "pytorch_model.bin").exists()

    def test_fft_packing(self):
        # pylint: disable=duplicate-code
        output_dir = tempfile.mkdtemp()
        cfg = DictDefault(
            {
                "base_model": "JackFram/llama-68m",
                "base_model_config": "JackFram/llama-68m",
                "flash_attention": True,
                "flash_attn_fuse_qkv": True,
                "flash_attn_fuse_mlp": True,
                "sample_packing": True,
                "sequence_len": 1024,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<unk>",
                    "bos_token": "<s>",
                    "eos_token": "</s>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "num_epochs": 2,
                "micro_batch_size": 2,
                "gradient_accumulation_steps": 1,
                "output_dir": output_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_torch",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "save_steps": 10,
                "eval_steps": 10,
            }
        )
        if is_torch_bf16_gpu_available():
            cfg.bf16 = True
        else:
            cfg.fp16 = True
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(output_dir) / "pytorch_model.bin").exists()