File size: 9,019 Bytes
8a1572a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""module for patching with unsloth optimizations"""

import inspect
import logging
import re
import types
from typing import Tuple

from peft import PeftModelForCausalLM
from transformers.models.llama.modeling_llama import (
    LlamaFlashAttention2,
    LlamaForCausalLM,
)

LOG = logging.getLogger("axolotl.monkeypatch.unsloth")

ORIGINAL_CEL_CODE = """    if labels is not None:
        # Shift so that tokens < n predict n
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = labels[..., 1:].contiguous()
        # Flatten the tokens
        loss_fct = CrossEntropyLoss()
        shift_logits = shift_logits.view(-1, self.config.vocab_size)
        shift_labels = shift_labels.view(-1)
        # Enable model parallelism
        shift_labels = shift_labels.to(shift_logits.device)
        loss = loss_fct(shift_logits, shift_labels)
"""

PATCHED_CEL_CODE = """    if labels is not None:
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = labels[..., 1:].contiguous()
        loss = fast_cross_entropy_loss(
            logits = shift_logits,
            labels = shift_labels,
        )
"""

ORIGINAL_QKV_CODE = """
    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)
""".lstrip(
    "\n"
)

PATCHED_QKV_CODE = """
    query_states, key_states, value_states = self.apply_qkv(self, hidden_states)
""".lstrip(
    "\n"
)

ORIGINAL_O_CODE = """
    attn_output = self.o_proj(attn_output)
""".lstrip(
    "\n"
)

PATCHED_O_CODE = """
    attn_output = self.apply_o(self, attn_output)
""".lstrip(
    "\n"
)


def original_apply_qkv(self, hidden_states):
    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)
    return query_states, key_states, value_states


def original_apply_o(self, hidden_states):
    attn_output = self.o_proj(hidden_states)
    return attn_output


def get_forward_code() -> str:
    forward = inspect.getsource(LlamaForCausalLM.forward)
    return forward


def test_cel_is_patchable() -> bool:
    forward = get_forward_code()
    return ORIGINAL_CEL_CODE in forward


def get_self_attn_code() -> str:
    forward = inspect.getsource(LlamaFlashAttention2.forward)
    return forward


def test_self_attn_is_patchable() -> bool:
    qkv = get_self_attn_code()
    return ORIGINAL_QKV_CODE in qkv and ORIGINAL_QKV_CODE in qkv


def integrate_cross_entropy_loss_patch():
    forward = get_forward_code()
    LlamaForCausalLM._original_forward = forward  # pylint: disable=protected-access
    forward, _ = detab_code(forward)
    assert ORIGINAL_CEL_CODE in forward, "Original forward code not found"

    forward = forward.replace(
        "@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)", ""
    )
    forward = forward.replace(
        "@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)",
        "",
    )
    forward = forward.replace(ORIGINAL_CEL_CODE, PATCHED_CEL_CODE)
    forward = forward.replace(
        "def forward(",
        "def fast_cross_entropy_loss_forward(",
        1,
    )

    # load imports necessary
    import transformers.models.llama.modeling_llama

    items_to_import = []
    for item in dir(transformers.models.llama.modeling_llama):
        if item in forward:
            items_to_import.append(item)

    exec(  # pylint: disable=exec-used  # nosec B102
        "from unsloth.kernels.cross_entropy_loss import fast_cross_entropy_loss",
        globals(),
    )

    exec(  # pylint: disable=exec-used  # nosec B102
        "from transformers.models.llama.modeling_llama import ("
        + ", ".join(x for x in items_to_import)
        + ")",
        globals(),
    )
    exec(forward, globals())  # pylint: disable=exec-used  # nosec B102
    print("patching unsloth fast_cross_entropy_loss")
    LlamaForCausalLM.forward = fast_cross_entropy_loss_forward  # pylint: disable=undefined-variable  # noqa: F821


def detab_code(code: str) -> Tuple[str, str]:
    spaces = re.match(r"([\s\t]{1,})", code).group(0)
    code = re.sub(r"^" + spaces, "", code, flags=re.MULTILINE)
    return code, spaces


def patch_self_attn_lora():
    self_attn_forward = get_self_attn_code()
    LlamaFlashAttention2._original_forward = (  # pylint: disable=protected-access
        self_attn_forward
    )
    self_attn_forward, _ = detab_code(self_attn_forward)
    assert ORIGINAL_QKV_CODE in self_attn_forward, "Original qkv code not found"
    assert ORIGINAL_O_CODE in self_attn_forward, "Original o code not found"

    self_attn_forward = self_attn_forward.replace(ORIGINAL_QKV_CODE, PATCHED_QKV_CODE)
    self_attn_forward = self_attn_forward.replace(ORIGINAL_O_CODE, PATCHED_O_CODE)
    self_attn_forward = self_attn_forward.replace(
        "def forward(",
        "def unsloth_attn_forward(",
        1,
    )

    # load imports necessary
    import transformers.models.llama.modeling_llama

    items_to_import = []
    for item in dir(transformers.models.llama.modeling_llama):
        if item in self_attn_forward:
            items_to_import.append(item)

    exec(  # pylint: disable=exec-used  # nosec B102
        "from transformers.models.llama.modeling_llama import ("
        + ", ".join(x for x in items_to_import)
        + ")",
        globals(),
    )
    exec(self_attn_forward, globals())  # pylint: disable=exec-used  # nosec B102
    print("patching unsloth attn lora")
    LlamaFlashAttention2.forward = (
        unsloth_attn_forward  # pylint: disable=undefined-variable  # noqa: F821
    )


def integrate_lora_mlp_patch(peft_model: PeftModelForCausalLM):
    if peft_model.base_model.config.model_type in ["llama", "mistral"]:
        from unsloth.kernels import apply_lora_mlp_swiglu

        apply_lora_mlp = apply_lora_mlp_swiglu
    elif peft_model.base_model.config.model_type == "gemma":
        from unsloth.kernels import apply_lora_mlp_geglu_approx

        apply_lora_mlp = apply_lora_mlp_geglu_approx
    else:
        raise NotImplementedError(
            f"Model type {peft_model.base_model.config.model_type} not supported"
        )

    for idx, layer in enumerate(peft_model.model.model.layers):
        layer_modules = [
            getattr(layer.mlp, linear_proj)
            for linear_proj in ["gate_proj", "up_proj", "down_proj"]
        ]
        is_mlp_lora = all(hasattr(module, "lora_A") for module in layer_modules)
        mlp_no_bias = all(
            getattr(module, "base_layer", module).bias is None
            for module in layer_modules
        )
        mlp_not_dora = all(
            getattr(module, "lora_magnitude_vector", None) is None
            for module in layer_modules
        )

        if is_mlp_lora and mlp_no_bias and mlp_not_dora:
            layer.mlp.forward = types.MethodType(apply_lora_mlp, layer.mlp)
        else:
            logging.warning("unable to apply unsloth lora mlp patch to layer %d", idx)


def integrate_lora_patch(peft_model: PeftModelForCausalLM, cfg):
    from unsloth.kernels import apply_lora_o, apply_lora_qkv

    for idx, layer in enumerate(peft_model.model.model.layers):
        if cfg.unsloth_lora_qkv:
            layer_modules = [
                getattr(layer.self_attn, linear_proj)
                for linear_proj in ["q_proj", "k_proj", "v_proj"]
            ]
            is_qkv_lora = all(hasattr(module, "lora_A") for module in layer_modules)
            qkv_no_bias = all(
                getattr(module, "base_layer", module).bias is None
                for module in layer_modules
            )
            qkv_not_dora = all(
                getattr(module, "lora_magnitude_vector", None) is None
                for module in layer_modules
            )

            if is_qkv_lora and qkv_no_bias and qkv_not_dora:
                layer.self_attn.apply_qkv = apply_lora_qkv
            else:
                layer.self_attn.apply_qkv = original_apply_qkv
                logging.warning(
                    "unable to apply unsloth lora qkv patch to layer %d", idx
                )
        if cfg.unsloth_lora_o:
            layer_modules = [
                getattr(layer.self_attn, linear_proj) for linear_proj in ["o_proj"]
            ]
            is_o_lora = all(hasattr(module, "lora_A") for module in layer_modules)
            o_no_bias = all(
                getattr(module, "base_layer", module).bias is None
                for module in layer_modules
            )
            o_not_dora = all(
                getattr(module, "lora_magnitude_vector", None) is None
                for module in layer_modules
            )

            if is_o_lora and o_no_bias and o_not_dora:
                layer.self_attn.apply_o = apply_lora_o
            else:
                layer.self_attn.apply_o = original_apply_o
                logging.warning(
                    "unable to apply unsloth lora o_proj patch to layer %d", idx
                )